To solve the problem it is necessary to use Newton's second law and statistical equilibrium equations.
According to Newton's second law we have to

where,
m= mass
g = gravitational acceleration
For the balance to break, there must be a mass M located at the right end.
We will define the mass m as the mass of the body, located in an equidistant center of the corners equal to 4m.
In this way, applying the static equilibrium equations, we have to sum up torques at point B,

Regarding the forces we have,

Re-arrange to find M,



Therefore the maximum additional mass you could place on the right hand end of the plank and have the plank still be at rest is 16.67Kg
The answer is A
Materials that are good conductors of thermal energy are called thermal conductors. Metals are very good thermal conductors. Materials that are poor conductors of thermal energy are called thermal insulators. Gases such as air and materials such as plastic and wood are thermal insulators
Answer:D
Explanation:
Given
mass of object 
Distance traveled 
velocity acquired 
conserving Energy at the moment when object start falling and when it gains 12 m/s velocity
Initial Energy
Final Energy

where
is friction work if any


Since Friction is Present therefore it is a case of Open system and net external Force is zero
An open system is a system where exchange of energy and mass is allowed and Friction is acting on the object shows that system is Open .
Answer:
true
Explanation:
as long as it is the right conductive material