Answer:
16 squares
Step-by-step explanation:
The area of an isosceles is 

Hope this helped!
The steps to use to construct a frequency distribution table using sturge’s approximation is as below.
<h3>How to construct a frequency distribution table?</h3>
The steps to construct a frequency distribution table using Sturge's approximation are as follows;
Step 1: Find the range of the data: This is simply finding the difference between the largest and the smallest values.
Step 2; Take a decision on the approximate number of classes in which the given data are to be grouped. The formula for this is;
K = 1 + 3.322logN
where;
K= Number of classes
logN = Logarithm of the total number of observations.
Step 3; Determine the approximate class interval size: This is obtained by dividing the range of data by the number of classes and is denoted by h class interval size
Step 4; Locate the starting point: The lower class limit should take care of the smallest value in the raw data.
Step 5; Identify the remaining class boundaries: When you have gotten the lowest class boundary, then you can add the class interval size to the lower class boundary to get the upper class boundary.
Step 6; Distribute the data into respective classes:
Read more about frequency distribution table at; brainly.com/question/27820465
#SPJ1
Answer:
5
Step-by-step explanation:
Answer:
2 solutions
Step-by-step explanation:
I like to use a graphing calculator to find solutions for equations like these. The two solutions are ...
__
To solve this algebraically, it is convenient to subtract 2x-7 from both sides of the equation:
3x(x -4) +5 -x -(2x -7) = 0
3x^2 -12x +5 -x -2x +7 = 0 . . . . . eliminate parentheses
3x^2 -15x +12 = 0 . . . . . . . . . . . . collect terms
3(x -1)(x -4) = 0 . . . . . . . . . . . . . . . factor
The values of x that make these factors zero are x=1 and x=4. These are the solutions to the equation. There are two solutions.
__
<em>Alternate method</em>
Once you get to the quadratic form, you can find the number of solutions without actually finding the solutions. The discriminant is ...
d = b^2 -4ac . . . . where a, b, c are the coefficients in the form ax^2+bx+c
d = (-15)^2 -4(3)(12) = 225 -144 = 81
This positive value means the equation has 2 real solutions.
Answer:
The answer should be 8q-6 i think i tried
Step-by-step explanation: