1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
maks197457 [2]
3 years ago
6

A system of equations is given by 4x1 − 2x2 − 7x3 = 4 2x1 + 12x2 + 3x3 = −5 −x1 + 6x2 + 2x3 = 15 i) Write down the augmented coe

fficient matrix A. ii) Using row operations, put the ACM into reduced row echelon form. When doing this, you should indicate the exact row operation you are using at each stage, and the matrix it produces. You should be using the notation defined in the textbook. iii) Write down the set of equations corresponding to rref(A) and determine the set of solutions.
Mathematics
1 answer:
Bingel [31]3 years ago
5 0

Answer:

i) The augmented matrix for this system is

\left[\begin{array}{ccc|c}4&-2&-7&4\\2&12&3&-5\\-1&6&2&15\end{array}\right]

ii) The reduced row echelon form

\text{rref}(A)=\left[ \begin{array}{cccc} 1 & 0 & 0 & - \frac{692}{65} \\\\ 0 & 1 & 0 & \frac{423}{130} \\\\ 0 & 0 & 1 & - \frac{493}{65} \end{array} \right]

iii) The set of solutions are

x_1 = -692/65

x_2 = 423/130

x_3 = -493/65

Step-by-step explanation:

i) An augmented matrix for a system of equations is a matrix of numbers in which each row represents the constants from one equation (both the coefficients and the constant on the other side of the equal sign) and each column represents all the coefficients for a single variable.

We have the following system of equations:

4x_1 -2x_2 - 7x_3 = 4 \\2x_1 + 12x_2 + 3x_3 = -5\\ -x_1 + 6x_2 + 2x_3 = 15

Here is the augmented matrix for this system.

\left[\begin{array}{ccc|c}4&-2&-7&4\\2&12&3&-5\\-1&6&2&15\end{array}\right]

ii) To find the reduced row echelon form of

A=\left[ \begin{array}{cccc} 4 & -2 & -7 & 4 \\\\ 2 & 12 & 3 & -5 \\\\ -1 & 6 & 2 & 15 \end{array} \right]

you must:

  • Divide row 1 by 4 \left(R_1=\frac{R_1}{4}\right)

\left[ \begin{array}{cccc} 1 & - \frac{1}{2} & - \frac{7}{4} & 1 \\\\ 2 & 12 & 3 & -5 \\\\ -1 & 6 & 2 & 15 \end{array} \right]

  • Subtract row 1 multiplied by 2 from row 2 \left(R_2=R_2-\left(2\right)R_1\right)

\left[ \begin{array}{cccc} 1 & - \frac{1}{2} & - \frac{7}{4} & 1 \\\\ 0 & 13 & \frac{13}{2} & -7 \\\\ -1 & 6 & 2 & 15 \end{array} \right]

  • Add row 1 to row 3 \left(R_3=R_3+R_1\right)

\left[ \begin{array}{cccc} 1 & - \frac{1}{2} & - \frac{7}{4} & 1 \\\\ 0 & 13 & \frac{13}{2} & -7 \\\\ 0 & \frac{11}{2} & \frac{1}{4} & 16 \end{array} \right]

  • Divide row 2 by 13 \left(R_2=\frac{R_2}{13}\right)

\left[ \begin{array}{cccc} 1 & - \frac{1}{2} & - \frac{7}{4} & 1 \\\\ 0 & 1 & \frac{1}{2} & - \frac{7}{13} \\\\ 0 & \frac{11}{2} & \frac{1}{4} & 16 \end{array} \right]

  • Add row 2 multiplied by 1/2 to row 1 \left(R_1=R_1+\left(\frac{1}{2}\right)R_2\right)

\left[ \begin{array}{cccc} 1 & 0 & - \frac{3}{2} & \frac{19}{26} \\\\ 0 & 1 & \frac{1}{2} & - \frac{7}{13} \\\\ 0 & \frac{11}{2} & \frac{1}{4} & 16 \end{array} \right]

  • Subtract row 2 multiplied by 11/2 from row 3

\left[ \begin{array}{cccc} 1 & 0 & - \frac{3}{2} & \frac{19}{26} \\\\ 0 & 1 & \frac{1}{2} & - \frac{7}{13} \\\\ 0 & 0 & - \frac{5}{2} & \frac{493}{26} \end{array} \right]

  • Multiply row 3 by −2/5 \left(R_3=\left(- \frac{2}{5}\right)R_3\right)

\left[ \begin{array}{cccc} 1 & 0 & - \frac{3}{2} & \frac{19}{26} \\\\ 0 & 1 & \frac{1}{2} & - \frac{7}{13} \\\\ 0 & 0 & 1 & - \frac{493}{65} \end{array} \right]

  • Add row 3 multiplied by 3/2 to row 1 \left(R_1=R_1+\left(\frac{3}{2}\right)R_3\right)

\left[ \begin{array}{cccc} 1 & 0 & 0 & - \frac{692}{65} \\\\ 0 & 1 & \frac{1}{2} & - \frac{7}{13} \\\\ 0 & 0 & 1 & - \frac{493}{65} \end{array} \right]

  • Subtract row 3 multiplied by 1/2 from row 2 \left(R_2=R_2-\left(\frac{1}{2}\right)R_3\right)

\left[ \begin{array}{cccc} 1 & 0 & 0 & - \frac{692}{65} \\\\ 0 & 1 & 0 & \frac{423}{130} \\\\ 0 & 0 & 1 & - \frac{493}{65} \end{array} \right]

The answer is

\text{rref}(A)=\left[ \begin{array}{cccc} 1 & 0 & 0 & - \frac{692}{65} \\\\ 0 & 1 & 0 & \frac{423}{130} \\\\ 0 & 0 & 1 & - \frac{493}{65} \end{array} \right]

iii) The set of solutions are

x_1 = -692/65

x_2 = 423/130

x_3 = -493/65

You might be interested in
Javier wants to buy a new video game that costs $62. Last week he saved $20 for the
Sloan [31]

Answer: 9h + 20 = 62

Step-by-step explanation:

he has 20 dollars now he needs 42 more so 9h is how much he earns multiplied by h how many hours he needs to work and you would add 20 onto that for the money he already saved and set that equal to the amount he needs

7 0
2 years ago
Jocelyn purchased a new car in 2000 for $16, 100. The value of the car has
Maslowich
I think its 900 i’m not sure
7 0
2 years ago
Determine the slope of the linear function. Y= 1/5 x + 6
Novay_Z [31]
D. 1/5

Reason: it’s always the first number in the equation
7 0
3 years ago
Read 2 more answers
Suppose a marketing company wants to determine the current proportion of customers who click on ads on their smartphones. It was
andrezito [222]

Answer:

The 92% confidence interval for the true proportion of customers who click on ads on their smartphones is (0.3336, 0.5064).

Step-by-step explanation:

In a sample with a number n of people surveyed with a probability of a success of \pi, and a confidence level of 1-\alpha, we have the following confidence interval of proportions.

\pi \pm z\sqrt{\frac{\pi(1-\pi)}{n}}

In which

z is the zscore that has a pvalue of 1 - \frac{\alpha}{2}.

For this problem, we have that:

n = 100, p = 0.42

92% confidence level

So \alpha = 0.08, z is the value of Z that has a pvalue of 1 - \frac{0.08}{2} = 0.96, so Z = 1.75.

The lower limit of this interval is:

\pi - z\sqrt{\frac{\pi(1-\pi)}{n}} = 0.42 - 1.75\sqrt{\frac{0.42*0.58}{100}} = 0.3336

The upper limit of this interval is:

\pi + z\sqrt{\frac{\pi(1-\pi)}{n}} = 0.42 - 1.75\sqrt{\frac{0.42*0.58}{100}} = 0.5064

The 92% confidence interval for the true proportion of customers who click on ads on their smartphones is (0.3336, 0.5064).

4 0
3 years ago
10+(−3.5)×2+(−9)÷(−3)
Zepler [3.9K]

Answer:

6

General Formulas and Concepts:

<u>Pre-Algebra</u>

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right

Step-by-step explanation:

<u>Step 1: Define</u>

10 + (-3.5) × 2 + (-9) ÷ (-3)

<u>Step 2: Evaluate</u>

  1. Multiply:                    10 - 7 + (-9) ÷ (-3)
  2. Divide:                       10 - 7 + 3
  3. Subtract:                   3 + 3
  4. Add:                           6
6 0
2 years ago
Read 2 more answers
Other questions:
  • Marty and Ethan both wrote a function, but in different ways.
    13·2 answers
  • What is three times three
    12·2 answers
  • Which of the following sets could be the sides of a right triangle? {2, 3,square root 10} {3, 5, square root 34} {5, 8, 12}
    15·2 answers
  • When are there no solutions to an inequality?
    9·1 answer
  • Select the correct answer.
    12·2 answers
  • What is repating and terminating
    5·1 answer
  • 7295 what is the place value of the 9
    6·2 answers
  • Find the sum of the digits 10^15−1.
    12·2 answers
  • Simplify 81^5 = 3^х x=
    8·2 answers
  • HIII BEAUTIFUL PEOPLEeeeee
    10·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!