1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
maks197457 [2]
3 years ago
6

A system of equations is given by 4x1 − 2x2 − 7x3 = 4 2x1 + 12x2 + 3x3 = −5 −x1 + 6x2 + 2x3 = 15 i) Write down the augmented coe

fficient matrix A. ii) Using row operations, put the ACM into reduced row echelon form. When doing this, you should indicate the exact row operation you are using at each stage, and the matrix it produces. You should be using the notation defined in the textbook. iii) Write down the set of equations corresponding to rref(A) and determine the set of solutions.
Mathematics
1 answer:
Bingel [31]3 years ago
5 0

Answer:

i) The augmented matrix for this system is

\left[\begin{array}{ccc|c}4&-2&-7&4\\2&12&3&-5\\-1&6&2&15\end{array}\right]

ii) The reduced row echelon form

\text{rref}(A)=\left[ \begin{array}{cccc} 1 & 0 & 0 & - \frac{692}{65} \\\\ 0 & 1 & 0 & \frac{423}{130} \\\\ 0 & 0 & 1 & - \frac{493}{65} \end{array} \right]

iii) The set of solutions are

x_1 = -692/65

x_2 = 423/130

x_3 = -493/65

Step-by-step explanation:

i) An augmented matrix for a system of equations is a matrix of numbers in which each row represents the constants from one equation (both the coefficients and the constant on the other side of the equal sign) and each column represents all the coefficients for a single variable.

We have the following system of equations:

4x_1 -2x_2 - 7x_3 = 4 \\2x_1 + 12x_2 + 3x_3 = -5\\ -x_1 + 6x_2 + 2x_3 = 15

Here is the augmented matrix for this system.

\left[\begin{array}{ccc|c}4&-2&-7&4\\2&12&3&-5\\-1&6&2&15\end{array}\right]

ii) To find the reduced row echelon form of

A=\left[ \begin{array}{cccc} 4 & -2 & -7 & 4 \\\\ 2 & 12 & 3 & -5 \\\\ -1 & 6 & 2 & 15 \end{array} \right]

you must:

  • Divide row 1 by 4 \left(R_1=\frac{R_1}{4}\right)

\left[ \begin{array}{cccc} 1 & - \frac{1}{2} & - \frac{7}{4} & 1 \\\\ 2 & 12 & 3 & -5 \\\\ -1 & 6 & 2 & 15 \end{array} \right]

  • Subtract row 1 multiplied by 2 from row 2 \left(R_2=R_2-\left(2\right)R_1\right)

\left[ \begin{array}{cccc} 1 & - \frac{1}{2} & - \frac{7}{4} & 1 \\\\ 0 & 13 & \frac{13}{2} & -7 \\\\ -1 & 6 & 2 & 15 \end{array} \right]

  • Add row 1 to row 3 \left(R_3=R_3+R_1\right)

\left[ \begin{array}{cccc} 1 & - \frac{1}{2} & - \frac{7}{4} & 1 \\\\ 0 & 13 & \frac{13}{2} & -7 \\\\ 0 & \frac{11}{2} & \frac{1}{4} & 16 \end{array} \right]

  • Divide row 2 by 13 \left(R_2=\frac{R_2}{13}\right)

\left[ \begin{array}{cccc} 1 & - \frac{1}{2} & - \frac{7}{4} & 1 \\\\ 0 & 1 & \frac{1}{2} & - \frac{7}{13} \\\\ 0 & \frac{11}{2} & \frac{1}{4} & 16 \end{array} \right]

  • Add row 2 multiplied by 1/2 to row 1 \left(R_1=R_1+\left(\frac{1}{2}\right)R_2\right)

\left[ \begin{array}{cccc} 1 & 0 & - \frac{3}{2} & \frac{19}{26} \\\\ 0 & 1 & \frac{1}{2} & - \frac{7}{13} \\\\ 0 & \frac{11}{2} & \frac{1}{4} & 16 \end{array} \right]

  • Subtract row 2 multiplied by 11/2 from row 3

\left[ \begin{array}{cccc} 1 & 0 & - \frac{3}{2} & \frac{19}{26} \\\\ 0 & 1 & \frac{1}{2} & - \frac{7}{13} \\\\ 0 & 0 & - \frac{5}{2} & \frac{493}{26} \end{array} \right]

  • Multiply row 3 by −2/5 \left(R_3=\left(- \frac{2}{5}\right)R_3\right)

\left[ \begin{array}{cccc} 1 & 0 & - \frac{3}{2} & \frac{19}{26} \\\\ 0 & 1 & \frac{1}{2} & - \frac{7}{13} \\\\ 0 & 0 & 1 & - \frac{493}{65} \end{array} \right]

  • Add row 3 multiplied by 3/2 to row 1 \left(R_1=R_1+\left(\frac{3}{2}\right)R_3\right)

\left[ \begin{array}{cccc} 1 & 0 & 0 & - \frac{692}{65} \\\\ 0 & 1 & \frac{1}{2} & - \frac{7}{13} \\\\ 0 & 0 & 1 & - \frac{493}{65} \end{array} \right]

  • Subtract row 3 multiplied by 1/2 from row 2 \left(R_2=R_2-\left(\frac{1}{2}\right)R_3\right)

\left[ \begin{array}{cccc} 1 & 0 & 0 & - \frac{692}{65} \\\\ 0 & 1 & 0 & \frac{423}{130} \\\\ 0 & 0 & 1 & - \frac{493}{65} \end{array} \right]

The answer is

\text{rref}(A)=\left[ \begin{array}{cccc} 1 & 0 & 0 & - \frac{692}{65} \\\\ 0 & 1 & 0 & \frac{423}{130} \\\\ 0 & 0 & 1 & - \frac{493}{65} \end{array} \right]

iii) The set of solutions are

x_1 = -692/65

x_2 = 423/130

x_3 = -493/65

You might be interested in
Express x3 + 4x2 – 45x in factored form.
Dafna1 [17]
A is the answer because of x is all the same
5 0
3 years ago
Read 2 more answers
What's is 4 2/5 * -3 3/4
Xelga [282]
The answer would be either:
-99/10 or -9 9/10
3 0
3 years ago
Read 2 more answers
Write the expression as a single natural logarithm.3In3+3Inc
k0ka [10]

Answer:

ln(27c^3)

Step-by-step explanation:

Given: 3ln(3)+3ln(c)

If there is a coefficient in front of a log or ln, that means it becomes an exponent.

ln(3^3)+ln(c^3)

Simplify the exponent.

ln(27)+ln(c^3)

When there is addition between two logarithms or natural logarithms, it means they multiply together.

ln(27c^3)

3 0
4 years ago
Read 2 more answers
What is 66.5 divided by 3.5
Karolina [17]
66.5 divided by 3.5 is 19.
5 0
3 years ago
Read 2 more answers
Helpppppppppppppppppp
makvit [3.9K]

Answer:

c. 25

Step-by-step explanation:

100/12 = 8.3

8.3 × 3 = 24.9

rounded up is 25

6 0
3 years ago
Other questions:
  • Did I do this correctly? If not what’s the answer?
    10·2 answers
  • 16.437 rounded to the nearest hundredth is 16.43. true or false
    13·1 answer
  • A triangular pyramid has these dimensions.
    8·1 answer
  • Anyone? Can help !!!
    11·1 answer
  • A shirt that normally costs $30 is on sale for $21.75. What percent of the regular price is the sale price?
    15·1 answer
  • PLEASE HELP ME WITH THIS ONE !!!
    10·2 answers
  • Which table represents of a linear function?
    9·1 answer
  • The CEO of a large manufacturing company is curious if there is a difference in productivity level of her warehouse employees ba
    8·1 answer
  • What is the surface area?<br> 4 cm<br> 7 cm<br> 3 cm<br> square centimeters
    9·1 answer
  • The perimeter of a square is represented by the expression (32x – 12) feet. What expression below represents the length of one s
    10·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!