69..............should of listened in class
Square means L=W
V=62.5=LWH
L=W so
V=62.5=HL^2
SA=2(L^2+2LH)
we have
V=62.5=HL^2
solve for H
divide both sides by L^2
62.5/L^2=H
sub that for H in other equation
SA=2(L^2+2L(62.5/L^2))
SA=2(L^2+125/L)
SA=2L^2+250/L
find minimum of 2L^2+250L^-1
take the derivitive
4L-250L^-2, or 2(2L^3-125)/L^2
find where it equals zero
it equals zero at L=2.5∛4
L=W
if we evaluate 2L^2+250/L at L=2.5∛4, the value is 75∛2
H=62.5/L^2
H=
![\frac{25 \sqrt[3]{2} }{4}](https://tex.z-dn.net/?f=%20%5Cfrac%7B25%20%5Csqrt%5B3%5D%7B2%7D%20%7D%7B4%7D%20)
dimentions are
L=2.5∛4
W=2.5∛4
H=
![\frac{25 \sqrt[3]{2} }{4}](https://tex.z-dn.net/?f=%20%5Cfrac%7B25%20%5Csqrt%5B3%5D%7B2%7D%20%7D%7B4%7D%20)
minimum surface area is 75∛2 in^2 or aprox 94.4941 in^2
Answer: lateral surface area = 119.4cm^2
r = 2 cm.
h = 9.5 cm.
Steps:
Lateral surface area of a cylinder = 2πrh
r = radius h = height π = pi
2π(2)(9.5)
2π(19)
38π = 119.38052
Answer:
(x+10)(x+1)( x-3) ( x-3)
Step-by-step explanation:
root of 3 with multiplicity 2
( x-3) ^2 or ( x-3) ( x-3)
root of -10
(x- -10) is (x+10)
root of -1
(x - -1) is (x+1)
( x-3) ^2 (x+10)(x+1)