Answer:
Use the quadratic formula
=
−
±
2
−
4
√
2
x=\frac{-{\color{#e8710a}{b}} \pm \sqrt{{\color{#e8710a}{b}}^{2}-4{\color{#c92786}{a}}{\color{#129eaf}{c}}}}{2{\color{#c92786}{a}}}
x=2a−b±b2−4ac
Once in standard form, identify a, b, and c from the original equation and plug them into the quadratic formula.
5
2
−
4
1
+
8
=
0
5x^{2}-41x+8=0
5x2−41x+8=0
=
5
a={\color{#c92786}{5}}
a=5
=
−
4
1
b={\color{#e8710a}{-41}}
b=−41
=
8
c={\color{#129eaf}{8}}
c=8
=
−
(
−
4
1
)
±
(
−
4
1
)
2
−
4
⋅
5
⋅
8
√
2
⋅
5
2
Simplify
3
Separate the equations
4
Solve
Solution
=
8
=
1
5
The parallel cross-sections of a cylinder, cone, sphere, and pyramid are a circle, a circle, a circle, and a square.
We are given some solids. Solid geometry, or stereometry, is the traditional name for the geometry of three-dimensional Euclidean spaces in mathematics. Stereometry is concerned with measuring the volumes of various solid figures. The given solids are a cylinder, cone, sphere, and pyramid. We need to find the parallel cross-sections of the given solids. Parallel cross sections are cross sections of a solid that are parallel to each other. A cross section is a straight slice of an object. The parallel cross-sections of a cylinder, cone, sphere, and pyramid are a circle, a circle, a circle, and a square.
To learn more about cross-sections, visit :
brainly.com/question/15541891
#SPJ9
Answer:
2/3
Step-by-step explanation:
If you divided 2 by 3, you will get 0.6 repeating.
30.56 hope i helped my gurl
<h2>
Answer with explanation:</h2>
Given : In a restaurant, the proportion of people who order coffee with their dinner is p.
Sample size : n= 144
x= 120

The null and the alternative hypotheses if you want to test if p is greater than or equal to 0.85 will be :-
Null hypothesis :
[ it takes equality (=, ≤, ≥) ]
Alternative hypothesis :
[its exactly opposite of null hypothesis]
∵Alternative hypothesis is left tailed, so the test is a left tailed test.
Test statistic : 

Using z-vale table ,
Critical value for 0.05 significance ( left-tailed test)=-1.645
Since the calculated value of test statistic is greater than the critical value , so we failed to reject the null hypothesis.
Conclusion : We have enough evidence to support the claim that p is greater than or equal to 0.85.