Answer:
a) the magnitude of the force is
F= Q(
) and where k = 1/4πε₀
F = Qqs/4πε₀r³
b) the magnitude of the torque on the dipole
τ = Qqs/4πε₀r²
Explanation:
from coulomb's law
E = 
where k = 1/4πε₀
the expression of the electric field due to dipole at a distance r is
E(r) =
, where p = q × s
E(r) =
where r>>s
a) find the magnitude of force due to the dipole
F=QE
F= Q(
)
where k = 1/4πε₀
F = Qqs/4πε₀r³
b) b) magnitude of the torque(τ) on the dipole is dependent on the perpendicular forces
τ = F sinθ × s
θ = 90°
note: sin90° = 1
τ = F × r
recall F = Qqs/4πε₀r³
∴ τ = (Qqs/4πε₀r³) × r
τ = Qqs/4πε₀r²
“A place where things are baked”
- the bakery?
Answer:
Rs. 480.00
Explanation:
1kW = 1000W
therefore 500W = 0.5kW
20 × 24hrs = 480hrs in total.
0.5kW × 480hrs = 240kWh
if rs. 2 for 1kWh
then, 240kWh × 2 = Rs. 480.
The force result in stretching the spring 10.0 centimeters is 2.5N.
<h3>
What is Hooke's law?</h3>
If a spring is stretched from its equilibrium position, then a force with magnitude proportional to the increase in length from the equilibrium length is pulling each end.
F = kx
where k is the proportionality constant called the spring constant or force constant.
Up to a point, the elongation of a spring is directly proportional to the force applied to it. Once you extend the spring more than 10.0 centimeters, however, it no longer follows that simple linear rule.
Let the spring constant be very low 0.04N/m
The force applied is
F = 10 cm / 0.04
F = 0.1 m / 0.04
F = 2.5 N
Thus, the force result in stretching the spring 10cm is 2.5 N.
Learn more about hooke's law.
brainly.com/question/13348278
#SPJ1