Cryo-EM is used to preserve and characterize cycled positive electrodes. Under regular cycling conditions, there isn't an intimate coating layer like CEI.A small electrical short can cause a stable conformal CEI to form in place. The conformal CEI's chemistry is revealed by EELS and cryo-(S)TEM.
It has been assumed that the intimate coating layer generated on the positive electrode, known as cathode electrolyte interphase (CEI), is crucial. However, there are still numerous questions about CEI. This results from the absence of useful instruments to evaluate the chemical and structural characteristics of these delicate interphases at the nanoscale. Here, using cryogenic electron microscopy, we establish a methodology to maintain the natural condition and directly see the interface on the positive electrode.
Learn more about Cathode electrolyte interphase here:
brainly.com/question/861659
#SPJ4
The concentration after dilution is 1.4%.
We are aware that concentration and volume are related to each other by the formula -
=
, where we have initial concentration and volume on Left Hand Side and final concentration and volume on Right Hand Side.
Keep the values to calculate final concentration.
= (53.5 × 5.4)/205.0
Performing multiplication on Right and Side
= 288.9/205.0
Performing division on Right Hand Side
= 1.4%
Hence, the final concentration is 1.4%.
Learn more about concentration -
brainly.com/question/17206790
#SPJ4
The complete question is -
A 53.5 mL sample of an 5.4 % (m/v) KBr solution is diluted with water so that the final volume is 205.0 mL.
Calculate the final concentration and express your answer to two significant figures and include the appropriate units.
Answer : The value of ΔG expressed in terms of F is, -1 F
Explanation :
First we have to calculate the standard electrode potential of the cell.

or,


Now we have to calculate the standard cell potential.
Formula used :

where,
= Gibbs free energy = ?
n = number of electrons = 2
F = Faraday constant
= standard e.m.f of cell = +0.5 V
Now put all the given values in this formula, we get the Gibbs free energy.


Therefore, the value of ΔG expressed in terms of F is, -1 F
Answer:
3.74 x 10²² particles
Explanation:
Given parameters:
Mass of compound = 1.43g
Molar mass of compound = 23g
Unknown:
Number of particles of sodium = ?
Solution:
To find the number of particles of Na in the compound, we need to obtain the mass of sodium from the total mass given;
Mass of sodium = 
= 
= 1.43g
Now find the number of moles of this amount of Na in the sample;
Number of moles =
=
= 0.062mole
Now;
1 mole of substance = 6.02 x 10²³ particles
0.062 mole of substance = 0.062 x 6.02 x 10²³ particles
= 3.74 x 10²² particles