Answer: Option (b) is the correct answer.
Explanation:
In material bonding, there occurs Vander waal foces between the molecules in which their is either an induced or permanent dipole moment that attract molecules towards each other.
And, due to these forces the molecules are held together.
On the other hand, in a ionic bond there will always be transfer of electrons from one atom to another. This is because on atom which loses its valence electrons acquires a positive charge and another atom which gains the electrons acquires a negative charge.
Hence, these opposite charges strongly gets attracted towards each other forming a strong bond.
Whereas in a covalent bond, there will be sharing of electrons between the combining atoms.
In a metallic bond, there occurs a sea of electrons which is uniformly distributed throughout the solid substance or material.
Thus, we can conclude that the statement, Van der Waals bonds are formed by Van der Waals forces in which molecules or atoms have either an induced or permanent dipole moment to attract each other, about material bonding is correct.
Answer:
An antioxidant helps in the mopping up and elimination of free radicals and a common example is Glutathione. Oxidation reactions Involves the transfer of electrons or addition of oxygen to a substance.
Antioxidants help in decreasing or prevention of the oxidation of the molecules due to free radicals being formed which causes damage in the cells of animals.
Two non metal combined together and form the bond is called covalent bond
Note - yellow color molecules in pictures are non metal elements
example - co2 , so2,
Answer:
Gina Should Put Rubber Tires Under The Synthetic Category
Gina Should Put Starch Under The Natural Category
Explanation:
Edge 2020
Electron microscopes differ from light microscopes in that they produce an image of a specimen by using a beam of electrons rather than a beam of light. Electrons have much a shorter wavelength than visible light, and this allows electron microscopes to produce higher-resolution images than standard light microscopes