Answer:
Metes and bounds
Explanation:
Metes and bounds -
It refers to the process used to define any land or property , is referred to as metes and bounds .
In this method it includes , torrens , lot and block , rectangular .
The factors like direction and distance depending on the rocks or trees , is used in this method .
Hence , from the given information of the question ,
The correct term is metes and bounds .
First we find for the wavelength of the photon released due
to change in energy level. We use the Rydberg equation:
1/ʎ = R [1/n1^2 – 1/n2^2]
where,
ʎ is the wavelength
R is the rydbergs constant = 1.097×10^7 m^-1
n1 is the 1st energy level = 1
n2 is the higher energy level = infinity, so 1/n2 = 0
Calculating for ʎ:
1/ʎ = 1.097×10^7 m^-1 * [1/1^2 – 0]
ʎ = 9.1158 x 10^-8 m
Then calculate the energy using Plancks equation:
E = hc/ʎ
where,
h is plancks constant = 6.626×10^−34 J s
c is speed of light = 3x10^8 m/s
E = (6.626×10^−34 J s * 3x10^8 m/s) / 9.1158 x 10^-8 m
E = 2.18 x 10^-18 J = 2.18 x 10^-21 kJ
This is still per atom, so multiply by Avogadros number =
6.022 x 10^23 atoms / mol:
E = (2.18 x 10^-21 kJ / atom) * (6.022 x 10^23 atoms /
mol)
E = 1312 kJ/mol
Answer:
1.17 grams of HCl can neutralize 2.7 grams sodium bicarbonate
Explanation:
Step 1: Data given
Mass of sodium bicarbonate = 2.7 grams
Step 2: The balanced equation
HCl + NaHCO3 ⇔ NaCl + H2O + CO2
Step 3: Calculate moles NaHCO3
moles NaHCO3 =2.7 g / 84 g/mol= 0.032 moles
Step 4: Calculate moles HCl
For 1 mol NaHCO3 we need 1 mol HCl
For 0.032 moles NaHCO3 = 0.032 moles HCl
Step 5: Calculate mass HCl
Mass HCl = moles HCl * molar mass HCl
mass HCl = 0.032 * 36.46 g/mol= 1.17 grams
1.17 grams of HCl can neutralize 2.7 grams sodium bicarbonate
Answer:
I'm a bit confused on where the question is. Perhaps re-write it in the comments? I'd love to help but this seems more like an answer than a question xD
Explanation:
The correct answer is option a, that is, it gets broken down.
A set of metabolic reactions and procedures, which occurs in the cells of organisms to transform biochemical energy from nutrients into ATP, and then discharge waste components is known as cellular respiration. At the time of cellular respiration, a molecule of glucose gets dissociated slowly into water and carbon dioxide. With it, some of the ATP is generated directly in the reactions, which transform glucose.