C = 12 g
O = 16 g
H = 1 g
<h3>Further explanation
</h3>
Conservation of mass stated that
<em>In a closed system, the masses before and after the reaction are the same
</em>
we can calculate the mass of each atom in the compound :
O in O₂ :
mass O₂ = 32
mass O = 32 : 2 = 16 g
H in H₂O
mass H₂O = 18
mass 2.H + mass O = 18
mass 2.H + 16 = 18
mass 2.H=2
mass H = 1 g
C in CH₄
mass CH₄ = 16
mass C + mass 4.H = 16
mass C + 4.1=16
mass C = 12 g
or we can use formula :
Mass of a single C :

Answer:
How many moles of oxygen gas are required to make 8.33 moles of carbon dioxide? ... be used to produce 1.99 grams of water. 1.99 mg H2O X. 1mol H2O. 18.0g X ... c. If the reaction produces 5.3 mg of carbon dioxide how many grams of water ... X. 25mol O2. 2mol C8H18. X. 32.0g O2. 1mol O2. = 4.80 x 103g O2. Answer ...
Explanation:
Answer:
The carbons of the acetyl group oxidize which generate CO2, and in turn H2O.
Explanation:
The pyruvic acid that is generated during glycolysis enters the mitochondria. Inside this organelle, the acid molecules undergo a process called oxidative decaborxylation in which an enzyme of several cofactors is involved, one of which is coenzyme A. Pyruvic acid is transformed into an acetyl molecule and these are been introduced to the begining of the Krebs Cycle where the acetyl-group (2C) from acetyl-CoA is transferred to oxaloacetate (4C) to produce citrate (6C). As the molecule cycles the two carbons of the acetyl oxidize and are released in the form of CO2. Then the energy of the Krebs cycle becomes sufficient to reduce three NAD +, which means that three NADH molecules are formed. Although a small portion of energy is used to generate ATP, most of it is used to reduce not only the NAD + but also the FAD which, if oxidized, passes to its reduced state, FADH2
The important thing to note is the reason why electron react is due to the instability of the electrons. All elements wants to aim the electron configuration of the noble gases. This is the most stable form in which each of the orbitals are sufficiently filled. When it comes to bonding, the order of reactivity is: alkynes > alkenes > alkanes. Alkynes are compounds with triple bonds, alkenes with double bonds and alkanes with single bonds. The single bonds are called saturated hydrocarbons. This is because they have reached stability, so it is quite difficult to react this with reducing or oxidizing agents. Alkynes and alkenes are unsaturated hydrocarbons. They readily react with reducing and oxidizing agents so as to become saturated, as well. The underlying principle for this is that single bonds contain sigma bonds which is the head-on overlapping of electrons. These is the strongest type of covalent bond. Double and triple bonds contain pi bonds which is the side overlapping of electrons orbitals. Hence, these electrons would be easily separated making it more reactive especially during protonation.
The weathering process caused by cycles of freezing and thawing of water in surface pores, cracks, and other openings