Answer:


Explanation:
k = Coulomb constant = 
Q = Charge
r = Distance = 8 cm
R = Radius = 4 cm
Electric field is given by

Volume charge density is given by

The volume charge density for the sphere is 

The magnitude of the electric field is 
Answer:
75degree don't forget wind and gravity force pulling down
Answer: waves transport energy, not water. As a wave crest passes, the water particles move in circular paths. The movement of the floating inner tube is simulacra to the movement of the water particles. Water particles rise as a wave crest approaches.
Explanation:
The gravitational force between the Earth and the satellite (its "weight") is inversely proportional to the distance between the centers of both objects.
On the surface, their centers are separated by 1 Earth radius.
12,000 miles above the surface, they're separated by 4 Earth radiii.
(4/1) = 4
So after the move, the satellite's weight is (1/4²) = 1/16 of its surface weight.
(321 lb) / (16) = (20 and a hair) lb
The correct choice from the given list is " <em>>20 lb "</em> .