Answer:
a) 14 Ω
b) 2.0 A
c) 28 V
Explanation:
a) The total resistance of resistors in series is the sum:
R = R₁ + R₂
R = 8.0 Ω + 6.0 Ω
R = 14 Ω
b) The current in the 6.0 Ω resistor can be found with Ohm's law:
V = IR
12 V = I (6.0 Ω)
I = 2.0 A
c) Since the resistors are in series, they have the same current. So the total voltage is:
V = IR
V = (2.0 A) (14 Ω)
V = 28 V
Mass = Volume/Density. The answer is 9.8kg
Answer:
Explanation:
Altitude of the Sun and the latitude position on the earth play an important role in the season change on the earth.
When the altitude of the sun is high then the average temperature of the earth is higher because the luminous intensity of the sun rays is higher due to the focusing of high energy sun rays over a small area.
But when the sun is at higher altitudes we receive less denser rays of the sun and hence we have less heat on the earth on an average.
- But despite of the altitude some places on the earth have distinct temperature than the other place at the same time of the year. This is due to their latitudinal location. The places near the equator are warmer most of the times throughout the year because they receive the most direct rays while the poles receive slanting rays and hence are colder even in summer when the earth is at lower altitudes.
Answer:
the object has least potential energy at mean position of the SHM
Explanation:
If a block is connected with a spring and there is no resistive force on the system
In this case the total energy of the system is always conserved and it will change from one form to another form
So here we will say that
Kinetic energy + Potential energy = Total Mechanical energy
As we can say that total energy is conserved so here we have least potential energy when the system has maximum kinetic energy
So here we also know that at mean position of the SHM the system has maximum speed and hence maximum kinetic energy.
So the object has least potential energy at mean position of the SHM
The other person who answered this is wrong btw