Answer
given,
mass of the package = 12 kg
slides down distance = 2 m
angle of inclination = 53.0°
coefficient of kinetic friction = 0.4
a) work done on the package by friction is
W_f = -μk R d
= -μk (mg cos 53°)(2.0)
=-(0.4)(8.0 )(9.8)(cos 53°)(2.0)
= -37.75 J
b)
work done on the package by gravity is
W_g = m (g sin 53°) d
= (8.0 )(9.8 )(sin 53°)(2.0 )
=125.23 J
c)
the work done on the package by the normal force is
W_n = 0
d)
the net work done on the package is
W = -37.75 + 125.23 + 0
W = 87.84 J
Using the formula,

Here, d is distance, v is the velocity and t is time.
Given,
and
.
Substituting these values in above formula, we get

Thus, the distance traveled by the car is 200 miles
Answer:

Explanation:
Take at look to the picture I attached you, using Kirchhoff's current law we get:

This is a separable first order differential equation, let's solve it step by step:
Express the equation this way:

integrate both sides, the left side will be integrated from an initial voltage v to a final voltage V, and the right side from an initial time 0 to a final time t:

Evaluating the integrals:

natural logarithm to both sides in order to isolate V:

Where the term RC is called time constant and is given by:

Answer:
KITTEEENNSSSSS last one is what i got for critsmas KlikBot Hexagon Special Pack
Explanation: