the third answer is right.
Answer:
the answer is 11 N left
Explanation:
there is more force being applied in the direction left, so the ball will move left. to find the net force that the ball will move in that direction subtract the force being applied in the opposite direction. so, 16N-5N=11N. your answer in 11 N left.
Answer:
surface charge density on each sphere is
C
Explanation:
given data
radius of smaller sphere = 5 cm
radius of larger sphere is 12 cm
electric field at surface of larger sphere = 660 kV/m = 660 × 1000 v/m
solution
we apply here electric field formula that is express as
E =
.................1
put here value
660000 =
Q1 = 1056 ×
and
here field inside a conductor is zero so that electric potential ( V ) is constant
..................2
so Q2 will be
Q2 =
Q2 =
C
Answer:
25 m/s
Explanation:
First of all, we can find the acceleration the object by using Newton's second law of motion:

where
F = 20.0 N is the net force applied on the object
m = 4.0 kg is the mass of the object
a is its acceleration
Solving for a, we find

Now we know that the motion of the object is a uniformly accelerated motion, so we can find its final velocity by using the following suvat equation:

where
v is the final velocity
u = 0 is the initial velocity
is the acceleration
t = 5 s is the time
By substituting,

The formulas used to analyze the horizontal and vertical motion of projectiles launched at an angle involve the use of tangent, cosine and sine.
<h3>
What is vertical motion of a projecile?</h3>
The vertical motion of a projectile is affected by gravity and the velocity of vertical motion given by the following formula;
Vy = Vsinθ
<h3>
What is horizontal motion of a projecile?</h3>
The horizontal velocity of a projectile is given by the following formula;
Vx = Vcosθ
<h3>Direction of the motion</h3>
The direction of the motion is calculated as follows;
tanθ = Vy/Vx
Thus, the formulas used to analyze the horizontal and vertical motion of projectiles launched at an angle involve the use of tangent, cosine and sine.
Learn more about vertical motion here: brainly.com/question/24216590
#SPJ4