1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Nady [450]
3 years ago
13

HELP ME PLEASEE!!!THIS IS SCIENCE

Physics
1 answer:
Lady bird [3.3K]3 years ago
4 0

Answer:

B.

Explanation:

You might be interested in
The two speakers at S1 and S2 are adjusted so that the observer at O hears an intensity of 6 W/m² when either S1 or S2 is sounde
Zanzabum

Answer:

The minimum frequency is 702.22 Hz

Explanation:

The two speakers are adjusted as attached in the figure. From the given data we know that

S_1 S_2=3m

S_1 O=4m

By Pythagoras theorem

                                 S_2O=\sqrt{(S_1S_2)^2+(S_1O)^2}\\S_2O=\sqrt{(3)^2+(4)^2}\\S_2O=\sqrt{9+16}\\S_2O=\sqrt{25}\\S_2O=5m

Now

The intensity at O when both speakers are on is given by

I=4I_1 cos^2(\pi \frac{\delta}{\lambda})

Here

  • I is the intensity at O when both speakers are on which is given as 6 W/m^2
  • I1 is the intensity of one speaker on which is 6  W/m^2
  • δ is the Path difference which is given as

                                           \delta=S_2O-S_1O\\\delta=5-4\\\delta=1 m

  • λ is wavelength which is given as

                                             \lambda=\frac{v}{f}

      Here

              v is the speed of sound which is 320 m/s.

              f is the frequency of the sound which is to be calculated.

                                  16=4\times 6 \times cos^2(\pi \frac{1 \times f}{320})\\16/24= cos^2(\pi \frac{1f}{320})\\0.667= cos^2(\pi \frac{f}{320})\\cos(\pi \frac{f}{320})=\pm0.8165\\\pi \frac{f}{320}=\frac{7 \pi}{36}+2k\pi \\ \frac{f}{320}=\frac{7 }{36}+2k \\\\ {f}=320 \times (\frac{7 }{36}+2k )

where k=0,1,2

for minimum frequency f_1, k=1

                                  {f}=320 \times (\frac{7 }{36}+2 \times 1 )\\\\{f}=320 \times (\frac{79 }{36} )\\\\ f=702.22 Hz

So the minimum frequency is 702.22 Hz

5 0
2 years ago
When vibrational motion in an object increases, which is a true statement?
ss7ja [257]
Hello friend!!

We know that kinetic energy is the energy possessed due to the motion of the object. And we know if the object is in a fast motion then the temperature would be high, whereas if the object is slow in motion then it will have lower temperature. So we know that the kinetic energy is indirectly related to temperature.From our knowledge we can conclude that HIGHER THE TEMPERATURE, HIGHER THE KINETIC ENERGY and LOWER THE TEMPERATURE, LOWER THE KINETIC ENERGY.
Hence, the answer to your question here is,a.kinetic energy, temperature, and thermal energy increase. 
Hope it helps!!All the best!!
5 0
3 years ago
Two cars are initially separated by 2500 m and traveling towards each other. One car travels at 4.5 m/s and the second car trave
mylen [45]

Answer:

714.285s

Explanation:

use relative velocity

8-4.5 = 3.5m/s

x = 2500m

2500/3.5 = 714.285s = 700s (with sig figs)

7 0
2 years ago
Brainliest!
USPshnik [31]

Answer:

C) 40,000 Joules

Explanation:

½(1000)10² - 10000 = 40000

3 0
2 years ago
Blood in a carotid artery carrying blood to the head is moving at 0.15 m/s when it reaches a section where plaque has narrowed t
sp2606 [1]

Answer:

26.9 Pa

Explanation:

We can answer this question by using the continuity equation, which states that the volume flow rate of a fluid in a pipe must be constant; mathematically:

A_1 v_1 = A_2 v_2 (1)

where

A_1 is the cross-sectional area of the 1st section of the pipe

A_2 is the cross-sectional area of the 2nd section of the pipe

v_1 is the velocity of the 1st section of the pipe

v_2 is the velocity of the 2nd section of the pipe

In this problem we have:

v_1=0.15 m/s is the velocity of blood in the 1st section

The diameter of the 2nd section is 74% of that of the 1st section, so

d_2=0.74d_1

The cross-sectional area is proportional to the square of the diameter, so:

A_2=(0.74)^2 A_1=0.548 A_1

And solving eq.(1) for v2, we find the final velocity:

v_2=\frac{A_1 v_1}{A_2}=\frac{A_1 (0.15)}{0.548 A_1}=0.274 m/s

Now we can use Bernoulli's equation to find the pressure drop:

p_1 + \frac{1}{2}\rho v_1^2 = p_2 + \frac{1}{2}\rho v_2^2

where

\rho=1025 kg/m^3 is the blood density

p_1,p_2 are the initial and final pressure

So the pressure drop is:

p_1 - p_2 = \frac{1}{2}\rho (v_2^2-v_1^2)=\frac{1}{2}(1025)(0.274^2-0.15^2)=26.9 Pa

8 0
3 years ago
Other questions:
  • Compared to its mass on Earth, the mass of a 60-kg object on the moon is
    14·1 answer
  • A balloon is inflated from 0.0100 l to 0.400 l against an external pressure of 10.00 atm. how much work is done in joules? 101.3
    14·2 answers
  • How many sets of planets would you need to create the mass of the Sun?
    12·1 answer
  • spotlight on a boat is 2.5 m above the water, and the light strikes the water at a point that is 8.0 m horizontally displaced fr
    11·1 answer
  • If it is known that a motor battery has an input voltage of 12V and a capacity of 6 Ah, how much power and resistor value is req
    7·1 answer
  • A skateboarder rolls off a 2.5 m high bridge into the river. If the skateboarder was originally moving at 7.0 m/s, how much time
    14·1 answer
  • 1. When you talk into your paper cup telephone, the person on the other end can feel the bottom
    11·1 answer
  • 2. In a race, if a runner starts and stops at the same position, what is their<br> displacement? *
    10·1 answer
  • A 15kg penguin slides on its belly down an icy, frictionless glacier. If the penguin started from rest and reaches a speed of 11
    5·1 answer
  • Cancer and diabetes are two common hereditary diseases.<br><br> True or False?
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!