Answer:
The minimum frequency is 702.22 Hz
Explanation:
The two speakers are adjusted as attached in the figure. From the given data we know that
=3m
=4m
By Pythagoras theorem

Now
The intensity at O when both speakers are on is given by

Here
- I is the intensity at O when both speakers are on which is given as 6

- I1 is the intensity of one speaker on which is 6

- δ is the Path difference which is given as

- λ is wavelength which is given as

Here
v is the speed of sound which is 320 m/s.
f is the frequency of the sound which is to be calculated.

where k=0,1,2
for minimum frequency
, k=1

So the minimum frequency is 702.22 Hz
Hello friend!!
We know that kinetic energy is the energy possessed due to the motion of the object. And we know if the object is in a fast motion then the temperature would be high, whereas if the object is slow in motion then it will have lower temperature. So we know that the kinetic energy is indirectly related to temperature.From our knowledge we can conclude that HIGHER THE TEMPERATURE, HIGHER THE KINETIC ENERGY and LOWER THE TEMPERATURE, LOWER THE KINETIC ENERGY.
Hence, the answer to your question here is,a.kinetic energy, temperature, and thermal energy increase.
Hope it helps!!All the best!!
Answer:
714.285s
Explanation:
use relative velocity
8-4.5 = 3.5m/s
x = 2500m
2500/3.5 = 714.285s = 700s (with sig figs)
Answer:
C) 40,000 Joules
Explanation:
½(1000)10² - 10000 = 40000
Answer:
26.9 Pa
Explanation:
We can answer this question by using the continuity equation, which states that the volume flow rate of a fluid in a pipe must be constant; mathematically:
(1)
where
is the cross-sectional area of the 1st section of the pipe
is the cross-sectional area of the 2nd section of the pipe
is the velocity of the 1st section of the pipe
is the velocity of the 2nd section of the pipe
In this problem we have:
is the velocity of blood in the 1st section
The diameter of the 2nd section is 74% of that of the 1st section, so

The cross-sectional area is proportional to the square of the diameter, so:

And solving eq.(1) for v2, we find the final velocity:

Now we can use Bernoulli's equation to find the pressure drop:

where
is the blood density
are the initial and final pressure
So the pressure drop is:
