namely, how many times does 3/4 go into 3½? Let's firstly convert the mixed fraction to improper fraction.
![\bf \stackrel{mixed}{3\frac{1}{2}}\implies \cfrac{3\cdot 2+1}{2}\implies \stackrel{improper}{\cfrac{7}{2}} \\\\[-0.35em] ~\dotfill\\\\ \cfrac{7}{2}\div \cfrac{3}{4}\implies \cfrac{7}{~~\begin{matrix} 2 \\[-0.7em]\cline{1-1}\\[-5pt]\end{matrix}~~}\cdot \cfrac{\stackrel{2}{~~\begin{matrix} 4 \\[-0.7em]\cline{1-1}\\[-5pt]\end{matrix}~~}}{3}\implies \cfrac{14}{3}\implies 4\frac{2}{3}](https://tex.z-dn.net/?f=%5Cbf%20%5Cstackrel%7Bmixed%7D%7B3%5Cfrac%7B1%7D%7B2%7D%7D%5Cimplies%20%5Ccfrac%7B3%5Ccdot%202%2B1%7D%7B2%7D%5Cimplies%20%5Cstackrel%7Bimproper%7D%7B%5Ccfrac%7B7%7D%7B2%7D%7D%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill%5C%5C%5C%5C%20%5Ccfrac%7B7%7D%7B2%7D%5Cdiv%20%5Ccfrac%7B3%7D%7B4%7D%5Cimplies%20%5Ccfrac%7B7%7D%7B~~%5Cbegin%7Bmatrix%7D%202%20%5C%5C%5B-0.7em%5D%5Ccline%7B1-1%7D%5C%5C%5B-5pt%5D%5Cend%7Bmatrix%7D~~%7D%5Ccdot%20%5Ccfrac%7B%5Cstackrel%7B2%7D%7B~~%5Cbegin%7Bmatrix%7D%204%20%5C%5C%5B-0.7em%5D%5Ccline%7B1-1%7D%5C%5C%5B-5pt%5D%5Cend%7Bmatrix%7D~~%7D%7D%7B3%7D%5Cimplies%20%5Ccfrac%7B14%7D%7B3%7D%5Cimplies%204%5Cfrac%7B2%7D%7B3%7D)
First, u do -9+8x-4+8
Then, U simplify. The answer is 8x-5
Answer:
First one: x = all real numbers
Second one: x = 0
Step-by-step explanation:
for the first one
given 8x+10=2(4x+5) we need to isolate the variable (x) using inverse operations
step 1 distribute the 2 to what is in the parenthesis ( 4x and 5 )
2 * 4x = 8x
5 * 2 = 10
now we have 8x + 10 = 8x + 10
step 2 subtract 8x from each side
8x - 8x = 0
8x - 8x = 0
now we have 10 = 10
subtract 10 from each side
10 - 10 = 0
10 - 10 = 0
we're left with 0 = 0 meaning that all real numbers are solutions
For the second one
given 3x-8=2(x-4) once again we need to isolate the variable using inverse operations
step 1 distribute the 2 to what is in the parenthesis (x - 4)
2 *x = 2x
2 * -4 = -8
now we have 3x - 8 = 2x - 8
step 2 add 8 to each side
-8 + 8 = 0
-8 + 8 = 0
now we have 2x = 3x
step 3 subtract 2x from each side
3x - 2x = x
2x - 2x = 0
we're left with x = 0