Answer:
(a) the angular velocity at θ1 is 11.64 rad/s
(b) the angular acceleration is 0.12 rad/
(c) the angular position was the disk initially at rest is - 428.27 rad
Explanation:
Given information :
θ1 = 16 rad
θ2 = 76 rad
ω2 = 11 rad/s
t = 5.3 s
(a) The angular velocity at θ1
First, we use the angular motion equation for constant acceleration
Δθ = (ω1+ω2)t/2
θ2 - θ1 = (ω1+ω2)t/2
ω1 + ω2 = 2 (θ2 - θ1) / t
ω1 = (2 (θ2 - θ1) / t ) - ω2
= (2 (76-16) / 5.3) - 11
= 11.64 rad/s
(b) the angular acceleration
ω2 = ω1 + α t
α t = ω2 - ω1
α = (ω2 - ω1)/t
= (11.64 - 11) / 5.3
= 0.12 rad/
(c) the angular position was the disk initially at rest, θ0
at rest ω0 = 0
ω2^2 = ω01 t + 2 α Δθ
2 α Δθ = ω2^2
θ2 - θ0 = ω2^2 / 2 α
θ0 = θ2 - (ω2^2) / 2 α
= 76 - (
/ 2 x 0.12
= 76 - 504.16
= - 428.27 rad
Answer:
Note that:
Particles in a:
gas are well separated with no regular arrangement.
liquid are close together with no regular arrangement.
solid are tightly packed, usually in a regular pattern.
Explanation:
Answer:
a

b

Explanation:
From the question we are told that
The mass of the rock is 
The length of the small object from the rock is 
The length of the small object from the branch 
An image representing this lever set-up is shown on the first uploaded image
Here the small object acts as a fulcrum
The force exerted by the weight of the rock is mathematically evaluated as

substituting values


So at equilibrium the sum of the moment about the fulcrum is mathematically represented as

Here
is very small so
and 
Hence

=> 
substituting values


The mechanical advantage is mathematically evaluated as

substituting values


King Arthur's knights use a catapult to launch a rock from their vantage point on top of the castle wall, 14 m above the moat. The rock is launched at a speed of 27 m/s and an angle of 32degrees above the horizontal.
Answer:
it can be calculated by measuring the final distance away from a point, and then subtracting the initial distance