Alleles are inside a gene and genes are made up by alleles. Also, a gene is DNA, so the allele is like piece of DNA inside a gene<span>.
Hope this helps:)
</span>
From the reduction standard potentials;
The emf of Zinc = -0.76 V
and the emf of Aluminium = -1.66 V
In a galvanic cell the component with lower standard reduction potential gets oxidized and that it is added to the anode compartment.
Therefore. the voltage of a galvanic cell made with zinc and aluminium will be;
Voltage =Ered- Eoxd
= -0.76 - (-1.66)
= 0.9 V
Water has hydrogen bonds between Hydrogen atoms (that are slightly positive in molecules of water ) and Oxygen atoms (that are slightly negative in molecules of water), so it is necessary more energy to break them down and move water molecules from liquid state to gas.
He used prisms to demonstrate how white light is in fact made
Answer: The Lattice energy is the energy required to separate an ionic solid into its component gaseous ions <em>or</em>
It is the energy released when gaseous ions combine to form an ionic solid.
Explanation:
The lattice energy depends on the ionization energies and electron affinities of atoms involved in the formation of the compound. The ionization energies and electron affinities also depends on the ionic radius and charges of the ions involved. As the ionic radius for cations <em>increases</em> down the groups, ionization energy <em>decreases</em>, whereas, as ionic radii <em>decreases</em> across the periods , ionization energy <em>increases</em>. The trend observed for anions is that as ionic radii <em>increase </em>down the groups, electron affinity <em>decreases. </em>Across the period, as ionic radii <em>increases</em> electron affinity <em>increases</em>. Also, as the charge on the ion <em>increases,</em> it leads to an <em>increase</em> in energy requirement/content.
Therefore, for compounds formed from cations and anions in the same period, the highest charged cation and anion will have the highest lattice energy. For example, among the following compounds: Al2O3 (aluminium oxide), AlCl3 (aluminium chloride), MgO, MgCl2 (magnesium chloride), NaCl, Na2O (sodium oxide); Al2O3(aluminium oxide) will have the highest lattice energy, thus will be hardest to break apart because its ions have the highest charge.