HNO3 and H2SO4 are Arrhenius acids which will increase the concentration of H+ when dissolved in water.
KOH and Ca(OH)2 are Arrhenius bases that increase the concentration of OH- when dissociated in water.
the calculated value is Ea is 18.2 KJ and A is 12.27.
According to the exponential part in the Arrhenius equation, a reaction's rate constant rises exponentially as the activation energy falls. The rate also grows exponentially because the rate of a reaction is precisely proportional to its rate constant.
At 500K, K=0.02s−1
At 700K, k=0.07s −1
The Arrhenius equation can be used to calculate Ea and A.
RT=k=Ae Ea
lnk=lnA+(RT−Ea)
At 500 K,
ln0.02=lnA+500R−Ea
500R Ea (1) At 700K lnA=ln (0.02) + 500R
lnA = ln (0.07) + 700REa (2)
Adding (1) to (2)
700REa100R1[5Ea-7Ea] = 0.02) +500REa=0.07) +700REa.
=ln [0.02/0 .07]
Ea= 2/35×100×8.314×1.2528
Ea =18227.6J
Ea =18.2KJ
Changing the value of E an in (1),
lnA=0.02) + 500×8.314/18227.6
= (−3.9120) +4.3848
lnA=0.4728
logA=1.0889
A=antilog (1.0889)
A=12.27
Consequently, Ea is 18.2 KJ and A is 12.27.
Learn more about Arrhenius equation here-
brainly.com/question/12907018
#SPJ4
Answer: option (1) decreases.
Explanation:
May be you have experienced that: when you go to the beach, where the atmposhpere pressure is greater than the atmosphere pressure in places that are at higher altitudes, the water takes longer to boil. That is because the boiling temperature is greater, and you need more total heat (more time) to permit the liquid to reach that temperature.
The reason why that happens is because substances boil when the vapor pressure (the pressure of the particles of vapor over the liquid) equals the atmosphere pressure. So, when the atmposhere pressure increases, the temperature at which the vapor pressure reaches the atmosphere pressure also increases, and when the atmosphere pressure decreases, the temperature at which the vapor pressure reaches the atmosphere pressure decreases.
Answer:
T₂ = 84.375 K
Explanation:
Given data:
Initial volume = 3.3 L
Initial pressure = 2000 torr
Initial temperature = 225 K
Final temperature = ?
Final volume = 2.75 L
Final pressure = 900 torr
Formula:
P₁V₁/T₁ = P₂V₂/T₂
P₁ = Initial pressure
V₁ = Initial volume
T₁ = Initial temperature
P₂ = Final pressure
V₂ = Final volume
T₂ = Final temperature
Solution:
P₁V₁/T₁ = P₂V₂/T₂
T₂ = P₂V₂ T₁ /P₁V₁
T₂ = 900 torr× 2.75 L× 225 K / 2000 torr×3.3 L
T₂ = 556875 K/ 6600
T₂ = 84.375 K
Answer:
The correct answer is -
Prokaryotic unicellular -
Eubacteria - is the domain of unicellular organisms that has a prokaryotic cell
Archaebacteria - is one of the two domains of the prokaryotic organisms that are unicellular.
Eukaryotic multicellular (autotroph) -
Plantae - is the multicellular kingdom of the eukaryotic cells and as they produce their own food by photosynthesis called autotrophs.
protists - the autotrophic protists that are multicellular comes under algae, especially red algae.
Eukaryotic multicellular (heterotroph) -
Animalia - The Animalia kingdom is the kingdom of the heterotrophic eukaryotic organism that mostly has multicellular bodies. They depend on plants or other animals for their food.
Fungi - are mostly heterotrophic eukaryotic as they get their nutrient from other organisms are mostly multicellular.
Protist - some protists are heterotrophic as well.
Eukaryotic multicellular/unicellular (heterotroph/autotroph) -
Plantae
protists
Animalia
Fungi