the second one is equal and opposite
Answer:

Explanation:
Hello,
In this case, the undergoing chemical reaction is:

Thus, for the given masses of reactants we should compute the limiting reactant for which we first compute the available moles of iron (II) oxide:

Next, we compute the consumed moles of iron (II) oxide by the 10.0 g of magnesium, considering their 1:1 molar ratio in the chemical reaction:

Therefore, we can notice there is less consumed iron (II) oxide than available for which it is in excess whereas magnesium is the limiting reactant. In such a way, the produced mass of iron turns out:

Regards.
Answer:
disposing waste properly is important because watersheds are the surface water features and stormwater runoff within a watershed which ultimately end up in other bodies of water. It is essential to consider these downstream impacts when developing and implementing water quality protection and restoration actions. Everything upstream ends up downstream
Explanation:
A watershed describes an area of land that contains a common set of streams and rivers that all drain into a single larger body of water, such as a larger river, a lake or an ocean. For example, the Nile River watershed is an enormous watershed
Answer:
Oxygen and Carbon are in the non-metal section. Both are in 2nd period while Carbon is in group 4A and Oxygen is in group 6A.
Oxygen has more valence electrons than carbon. I wish I could give you a more accurate explanation why on paper, but all you need to do is count the electrons on the largest shell.
Here's the orbital notation of Carbon: 1s^2 2s^2 2px^1 py^1
Carbon's largest shell is 2. Count the electrons on shell 2, and you get 4 valence electrons.
Orbital notation of Oxygen: 1s^2 2s^2 2px^2 py^1 pz^1
Oxygen's largest shell is 2. So, like with carbon, count the electrons on the largest shell. You get 6.
There is a way easier way of interpreting this where you do not even have to write the orbital notation. I wish I can explain, but just know the periods and the group numbers.
Two or more atoms<span> may </span>bond<span> with each other to form a molecule. When two hydrogens and an oxygen share electrons via covalent </span>bonds<span>, a water molecule is formed. Chemical reactions </span>occur<span> when two or more </span>atoms bond<span> together to form molecules or when bonded </span>atoms are broken<span> apart.</span>