The change in velocity from 30 m/s north to 40 m/s south is a change of 70 m/s south
Answer:
The car appears to be moving 30 km/hr in the opposite direction of the bus.
Explanation:
Answer:
vo=5.87m/s
Explanation:
Hello! In this problem we have a uniformly varied rectilinear movement.
Taking into account the data:
α =69.2
vf = 10m / s
h=2.7m
g=9.8m/s2
We know we want to know the speed on the y axis.
We calculate vfy
vfy = 10m / s * (sen69.2) = 9.35m / s
We can use the following equation.

We clear the vo (initial speed)


vo=5.87m/s
<h2>
<u>Required</u><u> </u><u>Answer</u><u>:</u></h2>
The body will <u>stay at rest </u>(Option D). It is because a force of magnitude 50 N is pulled towards left and another force is pulling it towards right with same magnitude 50 N. So, the direction of force is opposite and magnitude is same i.e. 50 N. So, they will cancel each other and net force is 0. Hence, there would be no acceleration.
- Option A - Showing acceleration
- Option B - Showing acceleration
- Option C - Change of direction due to Net force
Hence, these options are incorrect because they are only possible when net external force is non-zero. Staying at rest i.e. Option D means there is no motion and hence no acceleration, this shows that net force is 0
<u>━━━━━━━━━━━━━━━━━━━━</u>