The redshift of distant galaxy are larger than those of closer galaxies, which indicates that the galaxy is receding at a faster rate.
- The Universe was 5 percent its current size when light left objects now at redshift of <u>19</u>.
Reasons:
The size of the universe represented as a scale factor with relation to the redshift can be presented as follows;

Where;
a₀ = The current size of the Universe
a = The size of the early Universe = 5% of a
Therefore;


0.05 + 0.05·z = 1

- The redshift is of the observed light is, z = <u>19</u>
Learn more here:
brainly.com/question/14459434
brainly.com/question/3654558
Answer:
Explanation:
A and B are in series , Total resistance = Ra + Rb
This resistance is in parallel with single resistor C
Equivalent resistance Re = Rc x ( Ra + Rb ) / [Rc + ( Ra + Rb )]
Now this combination is in series in single resistance D .
Total resistance = Rd + Re
= Rd + { Rc x ( Ra + Rb ) / [Rc + ( Ra + Rb )] }
Assuming that the vectors are acting along the same axis, we
could just simply add or subtract the vectors. Since the F1 is greater than F2,
there would be motion, there would be acceleration, and that the direction of
motion is along the F1.
Explanation:
Lasers produce a narrow beam of light in which all of the light waves have very similar wavelengths. The laser's light waves travel together with their peaks all lined up, or in phase. This is why laser beams are very narrow, very bright, and can be focused into a very tiny spot.
Answer:
1. Electromagnetic waves travel in a vacuum whereas mechanical waves do not.
2. The ripples made in a pool of water after a stone is thrown in the middle are an example of mechanical wave. Examples of electromagnetic waves include light and radio signals.
3. Mechanical waves are caused by wave amplitude and not by frequency. Electromagnetic Waves are produced by vibration of the charged particles.
4. While an electromagnetic wave is called just a disturbance, a mechanical wave is considered a periodic disturbance.
Explanation: