1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
tino4ka555 [31]
3 years ago
13

What happens to static and kinetic friction as mass increases?

Physics
1 answer:
Vikentia [17]3 years ago
5 0
Static friction is a force between two objects that are not moving relative to one another. For example, an object resting on a slope, but not sliding down the slope, is kept in its position by static friction. Static friction must be overcome to cause an object to move across a surface.
You might be interested in
Water is boiled at sea level in a coffeemaker equipped with an immersion-type electric heating element. The coffee maker contain
Luden [163]

Answer:

P=1362\ W

t'=251.659\ s is time required to heat to boiling point form initial temperature.

Explanation:

Given:

initial temperature of water, T_i=18^{\circ}C

time taken to vapourize half a liter of water, t=18\ min=1080\ s

desity of water, \rho=1\ kg.L^{-1}

So, the givne mass of water, m=1\ kg

enthalpy of vaporization of water, h_{fg}=2256.4\times 10^{-3}\ J.kg^{-1}

specific heat of water, c=4180\ J.kg^{-1}.K^{-1}

Amount of heat required to raise the temperature of given water mass to 100°C:

Q_s=m.c.\Delta T

Q_s=1\times 4180\times (100-18)

Q_s=342760\ J

Now the amount of heat required to vaporize 0.5 kg of water:

Q_v=m'\times h_{fg}

where:

m'=0.5\ kg= mass of water vaporized due to boiling

Q_v=0.5\times 2256.4

Q_v=1.1282\times 10^{6}\ J

Now the power rating of the boiler:

P=\frac{Q_s+Q_v}{t}

P=\frac{342760+1128200}{1080}

P=1362\ W

Now the time required to heat to boiling point form initial temperature:

t'=\frac{Q_s}{P}

t'=\frac{342760}{1362}

t'=251.659\ s

6 0
3 years ago
Which of the following circuits can be used to measure the resistance of the heating element, shown as a resistor in the diagram
Wewaii [24]

In order to measure the resistance in the circuit, we need to know the voltage V and the current I in the circuit, this way we can calculate the resistance using the formula:

R=\frac{V}{I}

In order to calculate the current, we can use an amperemeter that must be in series with the circuit, this way it will not affect the circuit.

And in order to calculate the voltage, we can use a voltmeter that must be in parallel with the resistance, this way it will not affect the circuit.

The correct option that shows an amperemeter in series and a voltmeter in parallel is the fourth option.

8 0
1 year ago
How much power is used in a machine that produces 15 Joules of work in 3 seconds? Use the formula P = W/t.
Marta_Voda [28]
P=w/t


w=15
t=3
therefore, 5 watts (b)
7 0
3 years ago
An automobile moves on a level horizontal road in a circle of radius 30 m. The coefficient of
blondinia [14]

Answer:

v = 12.12 m/s      

Explanation:

It is given that,

Radius of circle, r = 30 m

The coefficient friction between tires and road is 0.5,

The centripetal force is balanced by the force of friction such that,

v = 12.12 m/s

So, the maximum speed with which this car can round this curve is 12.12 m/s. Hence, this is the required solution.

5 0
3 years ago
Fellow student of mathematical bent tells you that the wave function of a traveling wave on a thin rope is y(x,t)= 2.20 mm cos[(
bezimeni [28]

Answer

given,

y(x,t)= 2.20 mm cos[( 7.02 rad/m )x+( 743 rad/s )t]

length of the rope = 1.33 m

mass of the rope = 3.31 g

comparing the given equation from the general wave equation

y(x,t)= A cos[k x+ω t]

A is amplitude

now on comparing

a) Amplitude  = 2.20 mm

b) frequency =

     f = \dfrac{\omega}{2\pi}

     f = \dfrac{743}{2\pi}

          f = 118.25 Hz

c) wavelength

        k= \dfrac{2\pi}{\lambda}

        \lambda= \dfrac{2\pi}{k}

        \lambda= \dfrac{2\pi}{7.02}

        \lambda= 0.895\ m

d) speed

         v = \dfrac{\omega}{k}

         v = \dfrac{743}{7.02}

                v = 105.84 m/s

e) direction of the motion will be in negative x-direction

f) tension

  T = \dfrac{v^2\ m}{L}

  T = \dfrac{(105.84)^2\times 3.31 \times 10^{-3}}{1.33}

      T = 27.87 N

g) Power transmitted by the wave

  P = \dfrac{1}{2}m\ v \omega^2\ A^2

  P = \dfrac{1}{2}\times 0.00331\times 105.84\times 743^2\ 0.0022^2

      P = 0.438 W

5 0
3 years ago
Other questions:
  • Do deaf children go through the four stages of acquiring language? Use what you’ve read in the chapter to explain why or why not
    6·1 answer
  • What is the net force on this object?
    8·2 answers
  • At a constant temperature, the volume of a gas doubles when the pressure is reduced to half of its original value. This is a sta
    5·2 answers
  • Your neighbor Paul has rented a truck with a loading ramp. The ramp is tilted upward at 25°, and Paul is pulling a large crate u
    14·1 answer
  • A truck covers 40.0 m in 9.40 s while uniformly slowing down to a final velocity of 1.70 m/s.
    6·1 answer
  • At what temperature is the fahrenheit scale reading equal to twice that of the celsius?
    14·1 answer
  • A capacitor is constructed of two large, identical, parallel metal plates separated by a small distance d. A battery fully charg
    8·1 answer
  • 4 (a) (1) Which lens is a converging lens with the greatest power?
    6·1 answer
  • A bowler once measured that she can throw the bowling ball with a speed of 15miles/hour.If it takes 3 seconds from the ball to t
    10·1 answer
  • As shown in the diagram, an inflated balloon released from rest moves horizontally with velocity "v". The velocity of the balloo
    14·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!