Given: line segment AB // to line segment CD, ∠B ≅∠D and line segment BF ≅ to line segment ED. Prove: Δ ABF ≅ Δ CED.
Follow the matching numbers on the statement versus reason chart.
Statement:
1. line segment AB // to line segment CD.
2. ∠B ≅∠D
3. line segment BF ≅ to line segment ED.
4. ∠A ≅∠C
5. Δ ABF ≅ Δ CED
Reason:
1. Given
2. Given
3. Given
4. Alternate interior angles are congruent.
5. Corresponding parts of congruent triangles are congruent.
Answer:
To plot a decimal on a coordinate plane you plot it between the two whole numbers its close to.
Step-by-step explanation:
Answer:
What is pi? The number π (/paɪ/) is a mathematical constant. It is defined as the ratio of a circle's circumference to its diameter, and it also has various equivalent definitions. What are the first 3 numbers of pi? 3.14. Who invented Pi? The symbol π was devised by British mathematician William Jones in 1706 to represent the ratio and was later popularized by Swiss mathematician Leonhard Euler.
Step-by-step explanation:
Answer:
(i) (f - g)(x) = x² + 2·x + 1
(ii) (f + g)(x) = x² + 4·x + 3
(iii) (f·g)(x) = x³ + 4·x² + 5·x + 2
Step-by-step explanation:
The given functions are;
f(x) = x² + 3·x + 2
g(x) = x + 1
(i) (f - g)(x) = f(x) - g(x)
∴ (f - g)(x) = x² + 3·x + 2 - (x + 1) = x² + 3·x + 2 - x - 1 = x² + 2·x + 1
(f - g)(x) = x² + 2·x + 1
(ii) (f + g)(x) = f(x) + g(x)
∴ (f + g)(x) = x² + 3·x + 2 + (x + 1) = x² + 3·x + 2 + x + 1 = x² + 4·x + 3
(f + g)(x) = x² + 4·x + 3
(iii) (f·g)(x) = f(x) × g(x)
∴ (f·g)(x) = (x² + 3·x + 2) × (x + 1) = x³ + 3·x² + 2·x + x² + 3·x + 2 = x³ + 4·x² + 5·x + 2
(f·g)(x) = x³ + 4·x² + 5·x + 2