To prove that they were tested to see if they were correct or not.
I think:/
True, because a liquid can be taken and added, but a solid stay the same never losses and never gains
it is over 32 degrees Fahrenheit (freezing), and below 120 degrees Fahrenheit (boiling)
Answer:
11
Explanation:
Moles of KOH = 
Volume of water = 10 liters
Concentration of KOH is given by
![[KOH]=\dfrac{10^{-2}}{10}\\\Rightarrow [KOH]=10^{-3}\ \text{M}](https://tex.z-dn.net/?f=%5BKOH%5D%3D%5Cdfrac%7B10%5E%7B-2%7D%7D%7B10%7D%5C%5C%5CRightarrow%20%5BKOH%5D%3D10%5E%7B-3%7D%5C%20%5Ctext%7BM%7D)
is strong base so we have the following relation
![[KOH]=[OH^{-}]=10^{-3}\ \text{M}](https://tex.z-dn.net/?f=%5BKOH%5D%3D%5BOH%5E%7B-%7D%5D%3D10%5E%7B-3%7D%5C%20%5Ctext%7BM%7D)
![pOH=-\log [OH^{-}]=-\log10^{-3}](https://tex.z-dn.net/?f=pOH%3D-%5Clog%20%5BOH%5E%7B-%7D%5D%3D-%5Clog10%5E%7B-3%7D)

So, pH of the solution is 11
Answer is: because alkaline metals (group IA metals) are the strongest reducing agents and most reactive metals.
Reducing agent<span> is an element or compound that loses an </span>electron<span> to another </span>chemical species<span> in a </span>redox <span>chemical reaction and they have been oxidized.
Alkaline metals tend to lose only one electron in redox reaction.</span>