The conclusion best supported by the data can either be high temperature, low temperature, and normal temperature. Since there are diverse substances included in the chart, It is expected to also have diverse temperatures.
Answer: P2O5 is the empirical formula.
Explanation: When given percentages you can assume that many grams of each atom are in the compound. Then you divide grams by the molar mass of each element, giving you moles. Once you have moles, divide by the smaller molar amount, which should give you 1 mol of Phosphorus and 2.5 mol of Oxygen. Then multiply by 2 in order for both moles to be a whole number. This gets you 2 and 5.
Answer:
The answer is B. Van der Waals forces are weaker than ionic and covalent bonds.
Explanation:
In general, if we arrange these molecular forces from the strongest to weakest, it would be like this:
Covalent bonds > Ionic bonds > Hydrogen bonds > Dipole-Dipole Interactions > Van der Waals forces
Covalent bonds are known to have the strongest and most stable bonds since they go deep and into the inter-molecular state. A diamond is an example of a compound with this characteristic bond.
Ionic bonds are the next strongest molecular bond following covalent bonds. This is due to the protons and electrons causing an electro-static force which results to the strong bonds. An example would be Sodium Chloride (NaCl), which when separated is Na⁺ and Cl⁻.
Van der Waals forces, also known as Dispersion forces, are the weakest type of molecular bonds. They are only formed through residual molecular attractions when molecules pass by each other. It doesn't even last long due to the uneven electron dispersion. It can be made stronger by adding more electrons in the molecule. This kind of molecular bonds appear in non-polar molecules such as carbon dioxide.
HOPE THIS HELPS!!!!!!!!!!!!!!
///////////////////////////////////////////////////////////////////////////////////////////
Answer:
Forces between similar molecules are said to be <em>cohesive</em> while those between different types of molecules are said to be <em>adhesive</em>.
Water 'beads' due to its strong <em>cohesive</em> forces. The meniscus of water in a glass tube is <em>concave</em> because the <em>adhesive</em> forces are strong.
Explanation:
The water in a tube has stronger adhesive forces between the water and glass molecules, so the cohesive forces between water molecules are weaker. That makes the water 'ascend' through the tube, giving a concave form of the meniscus. Another example is mercury, which is the opposite. In this case, the cohesive forces are stronger than the adhesive ones, thus the meniscus is convex.