Answer :
(A) Br₂ (s) : molecular solids
(B) AgCl (s) : ionic solids
(C) S (s) : atomic solids
(D) CH₄ (s) : molecular solids
Explanation :
Molecular solids : It is defined as the solids in which they are held together by covalent forces, dipole interactions as attractive forces etc.
Ionic solids : It is defined as the solids in which the atoms composed with oppositely charged ions.
Atomic solids : It is defined as the solids in which the molecules are held together by covalent forces and also includes pure substance.
(A) Br₂ (s)
It is molecular solids because they are held together by covalent forces.
(B) AgCl (s)
It is ionic solids because in this atoms composed with oppositely charged ions.
(C) S (s)
It is atomic solids because it is a pure substance.
(D) CH₄ (s)
It is molecular solids because they are held together by covalent forces.
<u>Answer:</u> The speed of light in miles per minutes is 
<u>Explanation:</u>
We are given the speed of light is
and we need to convert it into miles/min. So, we use the converion factor:
1 hour = 60 minutes
Converting that quantity into miles/minutes, we get:

Hence, the speed of light in miles per minutes is 
Cause latin name of Pb is plumbum.
The same K - potassium - latin name is kalium.
Answer:
b) add 130 g of NaCH₃CO₂ to 100 mL of H₂O at 80 °C while stirring until all the solid dissolves, then let the solution cool to room temperature.
Explanation:
The solubility of NaCH₃CO₂ in water is ~1.23 g/mL. This means that at room temperature, we can dissolve 1.23 g of solute in 1 mL of water (solvent).
<em>What would be the best method for preparing a supersaturated NaCH₃CO₂ solution?</em>
<em>a) add 130 g of NaCH₃CO₂ to 100 mL of H₂O at room temperature while stirring until all the solid dissolves.</em> NO. At room temperature, in 100 mL of H₂O can only be dissolved 123 g of solute. If we add 130 g of solute, 123 g will dissolve and the rest (7 g) will precipitate. The resulting solution will be saturated.
<em>b) add 130 g of NaCH₃CO₂ to 100 mL of H₂O at 80 °C while stirring until all the solid dissolves, then let the solution cool to room temperature. </em>YES. The solubility of NaCH₃CO₂ at 80 °C is ~1.50g/mL. If we add 130 g of solute at 80 °C and let it slowly cool (and without any perturbation), the resulting solution at room temperature will be supersaturated.
<em>c) add 1.23 g of NaCH₃CO₂ to 200 mL of H₂O at 80 °C while stirring until all the solid dissolves, then let the solution cool to room temperature.</em> NO. If we add 1.23 g of solute to 200 mL of water, the resulting solution will have a concentration of 1.23 g/200 mL = 0.00615 g/mL, which represents an unsaturated solution.
Answer:
Because there is no friction, Newton's first law states that the ball should continue to roll. (continue at a constant speed)
Explanation:
Unless acted upon by an unbalanced force, Newton's first law of motion states that an object at rest stays at rest and an object in motion stays in motion with the same speed and direction.