The amount of sample that is left after a certain period of time, given the half-life, h, can be calculated through the equation.
A(t) = A(o) (1/2)^(t/d)
where t is the certain period of time. Substituting the known values,
A(t) = (20 mg)(1/2)^(85.80/14.30)
Solving,
A(t) = 0.3125 mg
Hence, the answer is 0.3125 mg.
When acids react with bases they produce salt and water such as:
HCl + NaOH → NaCl + H₂O
According to strength of acid and base, we have 4 types of salts:
salt of strong acid and strong base like: NaCl
salt of weak acid and strong base like: CH₃COONa
salt of strong acid and weak base like: NH₄Cl
salt of weak acid and weak base like: CH₃COONH₄
The answer to the question is D.
Answer: A) This reaction will be spontaneous only at high temperatures
Explanation:
= +ve, reaction is non spontaneous
= -ve, reaction is spontaneous
= 0, reaction is in equilibrium
Using Gibbs Helmholtz equation:
Given :
Thus the value of
is negative and spontaneous when temperature is high.
Answer:
The correct option is C.
Explanation:
Carbohydrates are one of the macro molecules that are consumed by living organisms. The end product of carbohydrate is glucose. Glucose is a very important fuel that the body cells used to produce energy, which they use to carry out their daily activities. Glucose is also known as blood sugar and it is the only fuel that living cells can use for the production of ATP. Other food macro molecules such as lipids and proteins can also be converted to glucose if there is a need for that. Glucose is always stored in the body in form of glycogen.
The statement given in option C about glucose is wrong because glucose is a monosaccharide and not a disaccharide.