Wavelength is the distance between identical points in the adjacent cycles of a waveform signal propagated in space or along a wire. In wireless systems, this length is usually specified in meters, centimeters, or millimeters.
Wavelengths are an important factor in Wi-Fi networks. Wi-Fi operates at five frequencies, all in the gigahertz range: 2.4 GHz, 3.6 GHz, 4.9 GHz, 5 GHz and 5.9 GHz. Higher frequencies have shorter wavelengths, and signals with shorter wavelengths have more trouble penetrating obstacles like walls and floors.
As a result, wireless access points that operate at higher frequencies with shorter wavelengths, often consume more power to transmit data at similar speeds and distances achieved by devices that operate at lower frequencies, with longer wavelengths.
If the group of all forces acting on an object is balanced,
then the effect of all of them is the same as if there were
no forces at all on the object. In that case, the object
continues moving in a straight line at a constant speed.
Answer:
#_pile = 12 celdas
Explanation:
Lead acid sulfur batteries generate each cell a potential of 2 volts. By colonato to reach the voltage of 24 volts
#_pile = 24/2
#_pile = 12 cledas
serially connected
Answer:
Atomic size gradually decreases from left to right across a period of elements.
Explanation:
This is because, within a period or family of elements, all electrons are added to the same shell. However, at the same time, protons are being added to the nucleus, making it more positively charged.
Answer:
The magnitude of displacement is 56.54 m
The direction of the displacement is along the line joining the two vectors.
Explanation:
The resultant displacement is always the line joining the initial and final position of the vectors.
As in figure,
the vector AB = 35 m
the vector BC = 15 m
the angle between AB and AC = 25' (minutes)
the resultant vector AC = ?
The resultant vector is given by the formula
AC² = AB² + BC² + 2 AB BC Cos θ
Substituting the values in the equations,
AC² = 35² + 15² + 2 x 35 x 15 x Cos 25'
= 56.54
Therefore, the magnitude of displacement is 56.54 m
The direction of the displacement is along the line joining the two vectors.