Answer:
750 force
Explanation:
I have never worked with force but I can guess using the formula. 1500, which is the mass, multiplied by the acceleration, 0.5, would equal 750 force, if being applied by the equation listed, Force= mass×acceleration
Answer:
Rectangular path
Solution:
As per the question:
Length, a = 4 km
Height, h = 2 km
In order to minimize the cost let us denote the side of the square bottom be 'a'
Thus the area of the bottom of the square, A = 
Let the height of the bin be 'h'
Therefore the total area, 
The cost is:
C = 2sh
Volume of the box, V =
(1)
Total cost,
(2)
From eqn (1):

Using the above value in eqn (1):


Differentiating the above eqn w.r.t 'a':

For the required solution equating the above eqn to zero:


a = 4
Also

The path in order to minimize the cost must be a rectangle.
We have that the block is moving horizontally. Hence, its potential energy due to gravity stays the same. The only change in its mechanical energy is the one due to the change of speed. This reduction of its kinetic energy, due to the conservation of energy, is equal to the work that friction does. We have that at A the kinetic energy is : K=1/2*m*u^2=10*10*10/2=500J. At B, we have that K=1/2*10*16=80J. Sine we have that the initial value is 500, the work from the friction force (opposite to the movement of the object) is 80-500=420J.
This is true
People who have color vision deficiency typically lack one or more of the three cones that are sensitive to a particular wavelength.