1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
erastovalidia [21]
3 years ago
13

A block is released from the top of a frictionless incline plane as pictured above. If the total distance travelled by the block

is 1.2 m to get to the bottom, calculate how fast it is moving at the bottom using Conservation of Energy.

Physics
1 answer:
kotegsom [21]3 years ago
4 0

Complete Question

The diagram for this question is showed on the first uploaded image (reference homework solutions )

Answer:

The  velocity at the bottom is  v  = 11.76  \ m/ s

Explanation:

From the question we are told that

   The  total distance traveled is  d =  1.2  \ m

    The mass of the block is  m_b  =  0.3 \ kg

      The  height of the block from the ground is h =  0.60 m  

According the law of  energy  

   PE  =  KE

Where  PE  is the potential energy which is mathematically represented as

      PE  =  m * g  *  h

substituting values

     PE  =   3 *  9.8  *  0.60

      PE  =  17.64 \  J

So

   KE  is the kinetic energy at the bottom which is mathematically represented as

          KE  =  \frac{1}{2}  *  m v^2

So

      \frac{1}{2}  *  m* v ^2  =  PE

substituting values  

  =>    \frac{1}{2}  *  3 * v ^2  = 17.64

=>       v  = \sqrt{ \frac{ 17.64}{ 0.5 * 3 } }

=>    v  = 11.76  \ m/ s

You might be interested in
How would you design an experiment to condition a rabbit to salivate to the ringing of a cell phone?​
Klio2033 [76]
Food causes the response (salivation). Pair the food each time with a cell phone ringing. Continue this process with repetition.
• Eventually, the rabbit will learn to salivate at the ringing
5 0
3 years ago
An object is moving east, and its velocity changes from 65 m/s to 25 m/s in 10 seconds. Which describes the acceleration? negati
hammer [34]

Answer:

we could use the formula, v=u+at,

65=25+a (10), a=4 , since the motion is declerating we have a=-4 m/s2

5 0
3 years ago
Uma massa de 500 Kg desloca-se com velocidade 58 km por hora. Calcule o módulo de sua quantidade por movimento
Simora [160]

The momentum of the object is 8050 kg m/s

Explanation:

The momentum of an object is defined as

p=mv

where

p is the momentum

m is the mass

v is the velocity of the object

For the object in this problem, we have

m = 500 kg is its mass

v = 58 km/h is its velocity

Converting the velocity into m/s,

v=58 \frac{km}{h}\cdot \frac{1000 m/km}{3600 s/h}=16.1 m/s

Therefore now we can find the momentum of the object:

p=(500)(16.1)=8050 kg m/s

Learn more about momentum:

brainly.com/question/7973509

brainly.com/question/6573742

brainly.com/question/2370982

brainly.com/question/9484203

#LearnwithBrainly

7 0
3 years ago
What is the focal length of a lens
goldenfox [79]

Answer:

The focal length of a lens is refers to the distance from the center of the lens to the principal foci.

4 0
3 years ago
A burglar attempts to drag a 108 kg metal safe across a polished wood floor Assume that the coefficient of static friction is 0.
V125BC [204]

Answer:

2.00 m/s²

Explanation:

Given

The Mass of the metal safe, M = 108kg

Pushing force applied by the burglar,  F = 534 N

Co-efficient of kinetic friction, \mu_k = 0.3

Now,

The force against the kinetic friction is given as:

f = \mu_k N = u_k Mg

Where,

N = Normal reaction

g= acceleration due to the gravity

Substituting the values in the above equation, we get

f = 0.3\times108\times9.8

or

f = 317.52N

Now, the net force on to the metal safe is

F_{Net}= F-f

Substituting the values in the equation we get

 F_{Net}= 534N-317.52N

or

F_{Net}= 216.48

also,

 

F_{Net}= M\timesacceleration of the safe

Therefore, the acceleration of the metal safe will be

acceleration of the safe=\frac{F_{Net}}{M}

or

 acceleration of the safe=\frac{216.48}{108}

or

 

acceleration of the safe=2.00 m/s^2

Hence, the acceleration of the metal safe will be  2.00 m/s²

3 0
3 years ago
Other questions:
  • What is the longest wavelength of radiation that possesses the necessary energy to break the bond 941?
    13·1 answer
  • Which one of the following lines best illustrates personification?
    7·2 answers
  • Immediately after being struck by a hammer, the nail (mass of 50 g) has a velocity of 50 m/s. The total frictional force is 62.5
    13·1 answer
  • Four students measure the mass of a standard mass that has an accepted value of 150.0 g. They post their results in a table.
    15·1 answer
  • Burning coal produces which type of gas?
    6·2 answers
  • How to Identify Newtons Three Laws in my Own Words?
    15·1 answer
  • The spread of fire from the ground floor to an upper floor of a building primarily due to heat transfer by
    9·1 answer
  • The number 14 is the 'mass number'. What does it tell us about this isotope?​
    6·1 answer
  • Which property of a filled balloon would be unchanged on the moon where there's no air and less gravity? A. mass B. weight C. vo
    7·2 answers
  • Please help/ show work !!! Also don’t answer by putting a link!!
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!