Answer:
thinnest soap film is 206.76 nm
Explanation:
Given data
wavelength = 550 nm
index of refraction n = 1.33
to find out
What is the thinnest soap film
solution
we have wavelength λ = 550 nm
that is λ = 550 ×
m
and n = 1.3
we will find the thickness of soap film as given by formula that is
thickness = λ/2n
thickness = 550 ×
/ 2(1.33)
thickness = 206.76 ×
m
thinnest soap film is 206.76 nm
1 inch = 2.54 centimeters
All we need to do is multiply.
68.5 * 2.54 = 173.99cm
Best of Luck!
17
What would the scale read? zero
18 In free fall you are being pulled by a gravity. "Truly" weightless presumably happens in deep space where there is nothing to pull you.
19 coasters accelerate down to simulate weight loss/zeroised. As do NASA planes,
Roller coasters are for fun seekers. NASA is for science
We are given an object that is speeding up on a level ground.
Let's remember that the gravitational energy depends on the change in height, therefore, if the object is not changing its height it means that the gravitational energy remains constant.
The kinetic energy depends on the velocity. If the velocity is increasing this means that the kinetic energy is also increasing.
Now, every change in velocity requires acceleration and acceleration requires a force. The force and the distance that the object moves are equivalent to the work that is transferred to the object and therefore, the change in kinetic energy. This means that the total energy of the system increases as work is transferred to the mass.
We have that the total energy of the system increases in the form of kinetic energy and that the gravitational potential energy remains constant. Therefore, the diagrams should look like pie charts that grow but the area of the segment of the potential energy stays the same. It should look similar to the following.
Answer:
0.36 A.
Explanation:
We'll begin by calculating the equivalent resistance between 35 Ω and 20 Ω resistor. This is illustrated below:
Resistor 1 (R₁) = 35 Ω
Resistor 2 (R₂) = 20 Ω
Equivalent Resistance (Rₑq) =?
Since, the two resistors are in parallel connections, their equivalence can be obtained as follow:
Rₑq = (R₁ × R₂) / (R₁ + R₂)
Rₑq = (35 × 20) / (35 + 20)
Rₑq = 700 / 55
Rₑq = 12.73 Ω
Next, we shall determine the total resistance in the circuit. This can be obtained as follow:
Equivalent resistance between 35 Ω and 20 Ω (Rₑq) = 12.73 Ω
Resistor 3 (R₃) = 15 Ω
Total resistance (R) in the circuit =?
R = Rₑq + R₃ (they are in series connection)
R = 12.73 + 15
R = 27.73 Ω
Finally, we shall determine the current. This can be obtained as follow:
Total resistance (R) = 27.73 Ω
Voltage (V) = 10 V
Current (I) =?
V = IR
10 = I × 27.73
Divide both side by 27.73
I = 10 / 27.73
I = 0.36 A
Therefore, the current is 0.36 A.