You would use answer 2O g/cm3
It’s procedural memory Bc idk but procedural is how to do something and declarative is remembering something
The answer is static friction. This is the friction that involves objects that do not move.
What are the choices ?
Without some directed choices, I'm, free to make up any
reasonable statement that could be said about Kevin in this
situation. A few of them might be . . .
-- Kevin will have no trouble getting back in time for dinner.
-- Kevin will have no time to enjoy the scenery along the way.
-- Some simple Physics shows us that Kevin is out of his mind.
He can't really do that.
-- Speed = (distance covered) / (time to cover the distance) .
If time to cover the distance is zero, then speed is huge (infinite).
-- Kinetic energy = (1/2) (mass) (speed)² .
If speed is huge (infinite), then kinetic energy is huge squared (even more).
There is not enough energy in the galaxy to push Kevin to that kind of speed.
-- Mass = (Kevin's rest-mass) / √(1 - v²/c²)
-- As soon as Kevin reaches light-speed, his mass becomes infinite.
-- It takes an infinite amount of energy to push him any faster.
-- If he succeeds somehow, his mass becomes imaginary.
-- At that point, he might as well turn around and go home ...
if he ever reached Planet-Y, nobody could see him anyway.
Answer:
The toy must calculate the person's speed/velocity
Explanation:
Since the school toy given to Henry can be used to tell how fast someone is moving, the toy must be able to calculate the person's speed/velocity using the <u>average distance</u> covered by the person divided by <u>time taken</u> to cover the distance; average distance ÷ time taken.
The toy must be able to determine the parameters (average distance and time taken) in order to be able to calculate the person's speed/velocity