Water evaporates at 100⁰C
So change in temperature = 100-20 = 80⁰C
Amount of water to be evaporated = 1 liter = 1L*1kg/liter = 1 kg
Specific heat of water is 1 calorie/gram ⁰C = 4.186 joule/gram =4186 J/kg
So heat required E = mcΔT = 1 * 4186 *80= 334880 J =334.88 kJ
So amount of heat require to evaporate water = 334.88 kJ
A nuclear can hold 2 electrons
Answer:
1. They should not trust this study. 2. Pseudoscience.
Explanation:
Because they drank the water and after 24 hours, they said that it was gone. Head aches go away sooner than that. Another reason is that some people could have lied about having a headache just so they could have the water or their headache could have gone away before they drank the water.
Answer:
X₃₁ = 0.58 m and X₃₂ = -1.38 m
Explanation:
For this exercise we use Newton's second law where the force is the Coulomb force
F₁₃ - F₂₃ = 0
F₁₃ = F₂₃
Since all charges are of the same sign, forces are repulsive
F₁₃ = k q₁ q₃ / r₁₃²
F₂₃ = k q₂ q₃ / r₂₃²
Let's find the distances
r₁₃ = x₃- 0
r₂₃ = 2 –x₃
We substitute
k q q / x₃² = k 4q q / (2-x₃)²
q² (2 - x₃)² = 4 q² x₃²
4- 4x₃ + x₃² = 4 x₃²
5x₃² + 4 x₃ - 4 = 0
We solve the quadratic equation
x₃ = [-4 ±√(16 - 4 5 (-4)) ] / 2 5
x₃ = [-4 ± 9.80] 10
X₃₁ = 0.58 m
X₃₂ = -1.38 m
For this two distance it is given that the two forces are equal
Answer:
The coupled velocity of both the blocks is 1.92 m/s.
Explanation:
Given that,
Mass of block A, 
Initial speed of block A, 
Mass of block B, 
Initial speed of block B, 
It is mentioned that if the two blocks couple together after collision. We need to find the common velocity immediately after collision. We know that due to coupling, it becomes the case of inelastic collision. Using the conservation of linear momentum. Let V is the coupled velocity of both the blocks. So,

So, the coupled velocity of both the blocks is 1.92 m/s. Hence, this is the required solution.