Answer:
The fireman will continue to descend, but with a constant speed.
Explanation:
In kinetic friction <em>(which is the case discussed here) </em>since the fireman is already in motion because of a certain force, once the frictional force matches the normal force, the fireman will stop accelerating and continue moving at a constant rate with the original speed he had. We will need a force greater than the normal force acting on the fireman to cause a deceleration.
We need to understand the difference between static friction and kinetic friction.
Static friction occurs in objects that are stationary, while kinetic friction occurs in objects that are already in motion.
In static friction, when the frictional force matches the weight or normal force of the object, the object remains stationary.
While in kinetic friction, when the frictional force matches the normal force, the object will stop accelerating. This is the case of the fireman sliding down the pole as discussed above.
<em>Steel: 11.0 – 12.5</em>
<em>T̶e̶t̶s̶u̶t̶e̶t̶s̶u̶ ̶T̶e̶t̶s̶u̶t̶e̶t̶s̶u̶</em>
Thanks,
<em>Deku ❤</em>
Answer:
a. Zin = 41.25 - j 16.35 Ω
b. V₁ = 143. 6 e⁻ ¹¹ ⁴⁶
c. Pin = 216 w
d. PL = Pin = 216 w
e. Pg = 478.4 w , Pzg = 262.4 w
Explanation:
a.
Zin = Zo * [ ZL + j Zo Tan (βl) ] / [ Zo + j ZL Tan (βl) ]
βl = 2π / λ * 0.15 λ = 54 °
Zin = 50 * [ 75 + j 50 Tan (54) ] / [ 50 + j 75 Tan (54) ]
Zin = 41.25 - j 16.35 Ω
b.
I₁ = Vg / Zg + Zin ⇒ I₁ = 300 / 41.25 - j 16.35 = 3.24 e ¹⁰ ¹⁶
V₁ = I₁ * Zin = 3.24 e ¹⁰ ¹⁶ * ( 41.25 - j 16.35)
V₁ = 143. 6 e⁻ ¹¹ ⁴⁶
c.
Pin = ¹/₂ * Re * [V₁ * I₁]
Pin = ¹/₂ * 143.6 ⁻¹¹ ⁴⁶ * 3.24 e ⁻ ¹⁰ ¹⁶ = 143.6 * 3.24 / 2 * cos (21.62)
Pin = 216 w
d.
The power PL and Pin are the same as the line is lossless input to the line ends up in the load so
PL = Pin
PL = 216 w
e.
Pg Generator
Pg = ¹/₂ * Re * [ V₁ * I₁ ] = 486 * cos (10.16)
Pg = 478.4 w
Pzg dissipated
Pzg = ¹/₂ * I² * Zg = ¹/₂ * 3.24² * 50
Pzg = 262.4 w
Answer:
Both balls have the same speed.
Explanation:
Janelle throws the two balls from the same height, with the same speed. Both balls will have the same potential and kinetic energy. Energy must be conserved. When the balls pass Michael, again they must have the same potential and kinetic energy.
Answer:
Adding heat makes the particles move faster so the particles have more kinetic energy when more thermal energy is added
Explanation: