Answer:
halogen
Explanation:
It belongs to Group 17 on the periodic table, which is a halogen
The element with 4 protons in the nucleus in Beryllium.
An oxide of nitrogen contains 30.45 mass % N, if the molar mass is 90± 5 g/mol the molecular formula is N₂O₄.
<h3>What is molar mass?</h3>
The molar mass of a chemical compound is determined by dividing its mass by the quantity of that compound, expressed as the number of moles in the sample, measured in moles. A substance's molar mass is one of its properties. The compound's molar mass is an average over numerous samples, which frequently have different masses because of isotopes.
<h3>How to find the molecular formula?</h3>
The whole-number multiple is defined as follows.
Whole-number multiple = 
The empirical formula mass is shown below.
Mw of empirical formula = Mw of N+ 2 x (Mw of O)
= 14.01 g/mol + 2 x (16.00 g/mol)
= 46.01 g/mol
With the given molar mass or the molecular formula mass, we can get the whole-number multiple for the compound.
Whole-number multiple =
≈ 2
Multiplying the subscripts of NO2 by 2, the molecular formula is N(1x2)O(2x2)= N2O4.
To learn more about molar mass visit:
brainly.com/question/12127540
#SPJ4
Answer:
The law of conservation of matter states that in a chemical reaction matter cannot be created or destroyed
Explanation:
Answer: If a hydrogen atom and a helium atom have the same kinetic energy then the wavelength of the hydrogen atom will be roughly equal to the wavelength of the helium atom.
Explanation:
The relation between energy and wavelength is as follows.

This means that energy is inversely proportional to wavelength.
As it is given that energy of a hydrogen atom and a helium atom is same.
Let us assume that
. Hence, relation between their wavelengths will be calculated as follows.
... (1)
... (2)
Equating the equations (1) and (2) as follows.

Thus, we can conclude that if a hydrogen atom and a helium atom have the same kinetic energy then the wavelength of the hydrogen atom will be roughly equal to the wavelength of the helium atom.