Atom, molecule , organelle, cell , tissue organ, organ systems, organism population, community, ecosystem, biome, biosphere
Answer:
An atom gets larger as the number of electronic shells increase; therefore the radius of atoms increases as you go down a certain group in the periodic table of elements. In general, the size of an atom will decrease as you move from left to the right of a certain period.
Explanation:
Answer:
Answer is given below:
Explanation:
<em>Given Data:</em>
mass = 80kg
acceleration = 4 ms
force = 800N
<em>Find out:</em>
friction = ?
<em>Formula</em><em>:</em>
F-friction = weight - f-net
<em>Solution:</em>
weight = (80)(10)
= 800 N
F-net = ma =(80)(4) = 320N
F-friction = weight - F-net
=800 N - 320N
=480N
<em>Answer</em> :
Friction = 480 N
Answer:
The answer to your question is 0.113 moles of Fe₂O₃
Explanation:
Data
moles of Fe₂O₃ = ?
mass of Fe₂O₃ = 18 grams
Process
1.- Calculate the molar mass of Fe₂O₃
Fe₂O₃ = (56 x 2) + (16 x 3)
= 112 + 48
= 160 g
2.- Use proportions to solve this problem. The molar mass is equivalent to 1 mol.
160 g of Fe₂O₃ --------------- 1 mol
18 g of Fe₂O₃ ---------------- x
x = (18 x 1)/160
x = 0.113 moles of Fe₂O₃
Answer:
There are
1.479
×
10
−
13
concentration of hydrogen ions
m
o
l
L
.
Explanation:
Because pH is a logarthmic scale, we can use the formula:
[
H
+
]
=
10
-pH
. Where...
=>
[
H
+
]
is the concentration of hydrogen ions in the solution.
=>
p
H
is the pH of the solution.
=> Where
10
is the base of the power - it's a logarithm formula.
We can now just sub in the values and solve for [
H
+
]
.
[
H
+
]
=
10
-pH
=
10
−
(
12.83
)
=
1.479108388
×
10
−
13
We can round (if required) to
1.479
×
10
−
13
.
Thus, there are
1.479
×
10
−
13
concentration of hydrogen ions
m
o
l
L
.
Hope this helps :)