Possible dimension of a box with a volume of 100 cubic cm
10 x 10 x 1 = 100
10 x 5 x 2 = 100
5 x 5 x 4 = 100
Surface area:
10 x 10 x 1 dimensions:
10 x 10 = 100 x 2 = 200 sq.cm
10 x 1 = 10 x 4 = 40 sq. cm
240 sq. cm * $0.05 / 100 sq.cm = $0.12 per box
0.12 per box * 100 boxes = $12
10 x 5 x 2 dimension
10 x 5 = 50 x 2 = 100 sq. cm
10 x 2 = 20 x 2 = 40 sq. cm
5 x 2 = 10 x 2 = 20 sq. cm
160 sq. cm * $0.05/100 sq. cm = $0. 08 per box
0.08 per box * 100 boxes = $8
5 x 5 x 4 dimension
5 x 5 = 25 x 2 = 50 sq. cm
5 x 4 = 20 x 4 = 80 sq. cm
130 sq. cm * $0.05/100 sq. cm = $0.065 per box
0.065 per box * 100 boxes = $6.50
The best dimension to use to have the least cost to make 100 boxes is 5 x 5 x 4. It only costs $6.50 to make 100 boxes.
Answer:
404 cm³ Anyway... Look down here for my explanation.
Step-by-step explanation:
Let's Draw a line from the center of the circle to one of the ends of the chord (water surface) and another to the point at greatest depth on your paper. A right-angled triangle is formed too. The Length of side to the water-surface is 5 cm, the hospot is 7 cm.
We Calculate the angle θ in the corner of the right-angled triangle by: cos θ = 5/7 ⇒ θ = cos ˉ¹ (5/7)
44.4°, so the angle subtended at the center of the circle by the water surface is roughly 88.8°
The area shaded will then be the area of the sector minus the area of the triangle above the water in your diagram.
Shaded area 88.8/360*area of circle - ½*7*788.8°
= 88.8/360*π*7² - 24.5*sin 88.8°
13.5 cm²
(using area of ∆ = ½.a.b.sin C for the triangle)
Volume of water = cross-sectional area * length
13.5 * 30 cm³
404 cm³
Answer:
BOYBOYOBOYOBYOBYOYOBYOBYOBYOBYOBOBYOBYOBY
Step-by-step explanation: