1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
slavikrds [6]
3 years ago
11

Alyssa is a waitress at a restaurant. Each day she works, Alyssa will make a

Mathematics
1 answer:
taurus [48]3 years ago
3 0

Answer:

$170

20+15t

Step-by-step explanation:

she already makes $20 in a day and then you add the 10 times $15 in tips which makes 170.

for the equation, she makes 20 so you add it to 15 times t which is the hypothetical number of tables

You might be interested in
Answer this and give an explanation.
Margarita [4]

Answer:

3/9

Step-by-step explanation:

1/3*3

4 0
3 years ago
Read 2 more answers
-12 = 4x + 1<br> solve<br> algebra
Eddi Din [679]

Answer:

x=-\frac{13}{4}

Step-by-step explanation:

-12=4x+1\\4x=-12-1\\x=-\frac{13}{4}

4 0
3 years ago
If anyone knows about definite integrals for calculus then please I request help! I
kicyunya [14]

Answer:

\displaystyle \int\limits^9_5 {\frac{1}{x^3}e^\big{4x^{-2}}} \, dx = \frac{1}{8} \bigg( e^\Big{\frac{4}{25}} - e^\Big{\frac{4}{81}} \bigg)

General Formulas and Concepts:

<u>Calculus</u>

Differentiation

  • Derivatives
  • Derivative Notation

Derivative Property [Multiplied Constant]:                                                           \displaystyle \frac{d}{dx} [cf(x)] = c \cdot f'(x)

Basic Power Rule:

  1. f(x) = cxⁿ
  2. f’(x) = c·nxⁿ⁻¹

Integration

  • Integrals

Integration Rule [Fundamental Theorem of Calculus 1]:                                     \displaystyle \int\limits^b_a {f(x)} \, dx = F(b) - F(a)

Integration Property [Multiplied Constant]:                                                         \displaystyle \int {cf(x)} \, dx = c \int {f(x)} \, dx

U-Substitution

Step-by-step explanation:

<u>Step 1: Define</u>

<em>Identify</em>

\displaystyle \int\limits^9_5 {\frac{1}{x^3}e^\big{4x^{-2}}} \, dx

<u>Step 2: Integrate Pt. 1</u>

<em>Identify variables for u-substitution.</em>

  1. Set <em>u</em>:                                                                                                             \displaystyle u = 4x^{-2}
  2. [<em>u</em>] Differentiate [Basic Power Rule, Derivative Properties]:                       \displaystyle du = \frac{-8}{x^3} \ dx
  3. [Bounds] Switch:                                                                                           \displaystyle \left \{ {{x = 9 ,\ u = 4(9)^{-2} = \frac{4}{81}} \atop {x = 5 ,\ u = 4(5)^{-2} = \frac{4}{25}}} \right.

<u>Step 3: Integrate Pt. 2</u>

  1. [Integral] Rewrite [Integration Property - Multiplied Constant]:                 \displaystyle \int\limits^9_5 {\frac{1}{x^3}e^\big{4x^{-2}}} \, dx = \frac{-1}{8}\int\limits^9_5 {\frac{-8}{x^3}e^\big{4x^{-2}}} \, dx
  2. [Integral] U-Substitution:                                                                              \displaystyle \int\limits^9_5 {\frac{1}{x^3}e^\big{4x^{-2}}} \, dx = \frac{-1}{8}\int\limits^{\frac{4}{81}}_{\frac{4}{25}} {e^\big{u}} \, du
  3. [Integral] Exponential Integration:                                                               \displaystyle \int\limits^9_5 {\frac{1}{x^3}e^\big{4x^{-2}}} \, dx = \frac{-1}{8}(e^\big{u}) \bigg| \limits^{\frac{4}{81}}_{\frac{4}{25}}
  4. Evaluate [Integration Rule - Fundamental Theorem of Calculus 1]:           \displaystyle \int\limits^9_5 {\frac{1}{x^3}e^\big{4x^{-2}}} \, dx = \frac{-1}{8} \bigg( e^\Big{\frac{4}{81}} - e^\Big{\frac{4}{25}} \bigg)
  5. Simplify:                                                                                                         \displaystyle \int\limits^9_5 {\frac{1}{x^3}e^\big{4x^{-2}}} \, dx = \frac{1}{8} \bigg( e^\Big{\frac{4}{25}} - e^\Big{\frac{4}{81}} \bigg)

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Integration

4 0
2 years ago
Please help ASAP please
mihalych1998 [28]

do you some help ?, I can try my best to help

6 0
3 years ago
Read 2 more answers
A falling object travels a distance given by the formula d=3t+5t2, where d is measured in feet and t is measured in seconds. How
Romashka-Z-Leto [24]

Answer:

<em>4.52secs</em>

Step-by-step explanation:

Given the height of a falling object expressed as;

d=3t+5t^2

If the object travel 84 feet, we are to find the time t it takes to travel. On substituting;

84 = 3t+5t^2

3t+5t^2 - 84 = 0

t = -5±√25-4(3)(-84)/2(3)

t = -5±√25+1008/6

t = -5±32.14/6

t = -5+32.14/6

t = 27.14/6

<em>t = 4.52 secs</em>

<em>Hence it will take 4.52secs for the object to travel 84feet</em>

8 0
2 years ago
Other questions:
  • In a circle, a central angle whose measure is pi/2 radians intercepts an arc whose length is 3pi/2 centimeters. How many centime
    7·1 answer
  • Aaron can run 2 kilometers in 14 1/2 minutes. Find his rate of speed in kilometers per minute
    7·1 answer
  • At Haines Elementary, 30% of the 120 teachers were male. The following school year, several new teachers were hired. The number
    5·1 answer
  • Can somebody help me with the rest of the question
    11·1 answer
  • Which inequality correctly compares One-third, Five-sixths, and Three-fifths? One-third &lt; Three-fifths &lt; Five-sixths One-t
    7·1 answer
  • Rewrite as a square of a monomial: 0.36x^6
    11·1 answer
  • -5y = -5
    10·1 answer
  • What is 3 x ( 2 x − 6 ) − ( 5 x + 8 ) + 2 ( 3 x 2 + 4 x )
    15·1 answer
  • If diameter of a circle is 28 cm,then the circumference of the circle is equal to​
    6·2 answers
  • PLEASE ANSWER THE QUESTION BELOW ASAP !!!!!
    12·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!