Answer:
The value of <em>c</em> is
.
Step-by-step explanation:
The perfect square of the difference between two numbers is:

The expression provided is:

The expression is a perfect square of the difference between two numbers.
One of the number is <em>x</em> and the other is √<em>c</em>.
Use the above relation to compute the value of <em>c</em> as follows:
![x^{2}-15x+c=(x-\sqrt{c})^{2}\\\\x^{2}-15x+c=x^{2}-2\cdot x\cdot\sqrt{c}+c\\\\15x=2\cdot x\cdot\sqrt{c}\\\\15=2\cdot\sqrt{c}\\\\\sqrt{c}=\frac{15}{2}\\\\c=[\frac{15}{2}]^{2}\\\\c=\frac{225}{4}](https://tex.z-dn.net/?f=x%5E%7B2%7D-15x%2Bc%3D%28x-%5Csqrt%7Bc%7D%29%5E%7B2%7D%5C%5C%5C%5Cx%5E%7B2%7D-15x%2Bc%3Dx%5E%7B2%7D-2%5Ccdot%20x%5Ccdot%5Csqrt%7Bc%7D%2Bc%5C%5C%5C%5C15x%3D2%5Ccdot%20x%5Ccdot%5Csqrt%7Bc%7D%5C%5C%5C%5C15%3D2%5Ccdot%5Csqrt%7Bc%7D%5C%5C%5C%5C%5Csqrt%7Bc%7D%3D%5Cfrac%7B15%7D%7B2%7D%5C%5C%5C%5Cc%3D%5B%5Cfrac%7B15%7D%7B2%7D%5D%5E%7B2%7D%5C%5C%5C%5Cc%3D%5Cfrac%7B225%7D%7B4%7D)
Thus, the value of <em>c</em> is
.
Answer:
x= -1
Step-by-step explanation:
7x+4= -3 take -4 off both sides> 7x= -7 now divide 7x/-7> x= -1
Answer:
The standard deviation of the data set is
.
Step-by-step explanation:
The Standard Deviation is a measure of how spread out numbers are. Its symbol is σ (the greek letter sigma)
To find the standard deviation of the following data set

we use the following formula

Step 1: Find the mean
.
The mean of a data set is the sum of the terms divided by the total number of terms. Using math notation we have:


Step 2: Create the below table.
Step 3: Find the sum of numbers in the last column to get.

Step 4: Calculate σ using the above formula.

You need to use the distance formula


so the distance between points (5,-2) and (-3,8) is

which won't simplify so it stays as is
<span>w divided by 7 1/2
Substitute variable for numbers
5 5/6 divided by 7 1/2
Convert the mixed numbers into improper fractions
35/6 divided by 15/2
Convert the division sign to multiplication while flipping the fraction 15/2 to 2/15
35/6*2/15
Multiply
Final Answer: 70/90</span>