<span>If a reaction is reversible, then it will attain the phase of Equilibrium and at that phase, the Amount of Reactants and Products would be: Equal
Hope this helps!</span>
That would be the first option Ca(OH)2 + H2SO4 → CaSO4 + 2H2O.
The Ca replaces the H2 in H2SO4, and the H2 replaces the Ca is Ca(OH)2.
Answer:
heat flow
Explanation:
heat flow moves to a higher temperature to a lower temperature
Answer:
V₂ = 1.92 L
Explanation:
Given data:
Initial volume = 0.500 L
Initial pressure =2911 mmHg (2911/760 = 3.83 atm)
Initial temperature = 0 °C (0 +273 = 273 K)
Final temperature = 273 K
Final volume = ?
Final pressure = 1 atm
Solution:
Formula:
P₁V₁/T₁ = P₂V₂/T₂
P₁ = Initial pressure
V₁ = Initial volume
T₁ = Initial temperature
P₂ = Final pressure
V₂ = Final volume
T₂ = Final temperature
by putting values,
V₂ = P₁V₁ T₂/ T₁ P₂
V₂ = 3.83 atm × 0.500 L × 273 K / 273 K × 1 atm
V₂ = 522.795 atm .L. K / 273 K.atm
V₂ = 1.92 L
Answer:
Close to the calculated endpoint of a titration - <u>Partially open</u>
At the beginning of a titration - <u>Completely open</u>
Filling the buret with titrant - <u>Completely closed</u>
Conditioning the buret with the titrant - <u>Completely closed</u>
Explanation:
'Titration' is depicted as the process under which the concentration of some substances in a solution is determined by adding measured amounts of some other substance until a rection is displayed to be complete.
As per the question, the stopcock would remain completely open when the process of titration starts. After the buret is successfully placed, the titrant is carefully put through the buret in the stopcock which is entirely closed. Thereafter, when the titrant and the buret are conditioned, the stopcock must remain closed for correct results. Then, when the process is near the estimated end-point and the solution begins to turn its color, the stopcock would be slightly open before the reading of the endpoint for adding the drops of titrant for final observation.