The quadrilateral is a trapezoid and the area of the quadrilateral is 85.04 square units
<h3>How to determine the quadrilateral?</h3>
The vertices are given as:
A:(-2, 3) B:(4, -6) C:(10, 2) D:(6, 8)
Next, we plot the vertices (see attachment)
From the attached graph, we can see that the quadrilateral is a trapezoid
<h3>How to determine the area?</h3>
From the plot, we have the following features:
Height: AD
Parallel sides: CD and AB
Calculate the lengths using:
![d = \sqrt{(x_2 -x_1)^2 + (y_2 -y_1)^2}](https://tex.z-dn.net/?f=d%20%3D%20%5Csqrt%7B%28x_2%20-x_1%29%5E2%20%2B%20%28y_2%20-y_1%29%5E2%7D)
So, we have:
![AD = \sqrt{(-2 -6)^2 + (3 -8)^2}](https://tex.z-dn.net/?f=AD%20%3D%20%5Csqrt%7B%28-2%20-6%29%5E2%20%2B%20%283%20-8%29%5E2%7D)
![AD = \sqrt{89}](https://tex.z-dn.net/?f=AD%20%3D%20%5Csqrt%7B89%7D)
![CD = \sqrt{(10 -6)^2 + (2 -8)^2}](https://tex.z-dn.net/?f=CD%20%3D%20%5Csqrt%7B%2810%20-6%29%5E2%20%2B%20%282%20-8%29%5E2%7D)
![CD = \sqrt{52}](https://tex.z-dn.net/?f=CD%20%3D%20%5Csqrt%7B52%7D)
![AB = \sqrt{(-2 -4)^2 + (3 +6)^2}](https://tex.z-dn.net/?f=AB%20%3D%20%5Csqrt%7B%28-2%20-4%29%5E2%20%2B%20%283%20%2B6%29%5E2%7D)
![AB = \sqrt{117}](https://tex.z-dn.net/?f=AB%20%3D%20%5Csqrt%7B117%7D)
The area is then calculated as:
Area = 0.5 * (CD + AB) * AD
This gives
Area = 0.5 * (√52 + √117) * √89
Evaluate
Area = 85.04
Hence, the area of the quadrilateral is 85.04 square units
Read more about areas at:
brainly.com/question/24487155
#SPJ1