Answer:
m < 1 = 18°
Step-by-step explanation:
If <ABD = 72°, and m < 2 is three times the measure of m < 1, then:
Let < ABC = m < 1 = x
< CBD = m < 2 = 3x
We can set up the following formula, since the sum of the measures of angles < 1 and < 2 is equal to <ABD (72°):
m < 1 + m < 2 = < ABD
x + 3x = 72°
Add like terms:
4x = 72°
Divide both sides by 4 to solve for x:

x = 18
Since x = 18, and m < 1 = x , then m < 1 = 18°.
And since m < 2 = 3x, then m < 2 = 3(18°) = 54°.
Let's check to see whether we derived the correct answers by plugging in the values of m < 1 and m < 2 into the established formula:
m < 1 + m < 2 = < ABD
18° + 54° = 72°
72° = 72° (True statement).
Please mark my answers as the Brainliest if my explanations were helpful :)
the yearly increase of x% assumes is compounding yearly, so let's use that.

![95000=80000\left(1+\frac{~~ \frac{r}{100}~~}{1}\right)^{1\cdot 5}\implies \cfrac{95000}{80000}=\left( 1+\cfrac{r}{100} \right)^5 \\\\\\ \cfrac{19}{16}=\left( 1+\cfrac{r}{100} \right)^5\implies \sqrt[5]{\cfrac{19}{16}}=1+\cfrac{r}{100}\implies \sqrt[5]{\cfrac{19}{16}}=\cfrac{100+r}{100} \\\\\\ 100\sqrt[5]{\cfrac{19}{16}}=100+r\implies 100\sqrt[5]{\cfrac{19}{16}}-100=r\implies 3.5\approx r](https://tex.z-dn.net/?f=95000%3D80000%5Cleft%281%2B%5Cfrac%7B~~%20%5Cfrac%7Br%7D%7B100%7D~~%7D%7B1%7D%5Cright%29%5E%7B1%5Ccdot%205%7D%5Cimplies%20%5Ccfrac%7B95000%7D%7B80000%7D%3D%5Cleft%28%201%2B%5Ccfrac%7Br%7D%7B100%7D%20%5Cright%29%5E5%20%5C%5C%5C%5C%5C%5C%20%5Ccfrac%7B19%7D%7B16%7D%3D%5Cleft%28%201%2B%5Ccfrac%7Br%7D%7B100%7D%20%5Cright%29%5E5%5Cimplies%20%5Csqrt%5B5%5D%7B%5Ccfrac%7B19%7D%7B16%7D%7D%3D1%2B%5Ccfrac%7Br%7D%7B100%7D%5Cimplies%20%5Csqrt%5B5%5D%7B%5Ccfrac%7B19%7D%7B16%7D%7D%3D%5Ccfrac%7B100%2Br%7D%7B100%7D%20%5C%5C%5C%5C%5C%5C%20100%5Csqrt%5B5%5D%7B%5Ccfrac%7B19%7D%7B16%7D%7D%3D100%2Br%5Cimplies%20100%5Csqrt%5B5%5D%7B%5Ccfrac%7B19%7D%7B16%7D%7D-100%3Dr%5Cimplies%203.5%5Capprox%20r)
You have the answer into the images.
The equarion to this problem is 30 + 100 + 50x = x