It is b. It gains momentum when going down. Think of it like a sled. When you go up the hill, it goes slower, but when you go down the hill, you gain speed(momentum) and it increases
that's sad that you are trying to find love on this app :(
Answer:
The rolling basketball has greater momentum.
Explanation:
The momentum of an object is defined as the product of mass and velocity.
Given that the bowling mass has a greater mass than the basketball,
The bowling ball is at rest, so the velocity if the ball is zero.
The basketball is rolling, it has some velocity associated with it.
Therefore, the momentum of the bowling ball is zero.
The basketball has some momentum associated with it.
Hence, the rolling basketball has greater momentum.
Explanation:
Given that,
The mass of rock, m = 2.35-kg
It was released from rest at a height of 21.4 m.
(a) The kinetic energy is given by : 
As the rock was at rest initially, it means, its kinetic energy is equal to 0.
(b) The gravitational potential energy is given by : 
It can be calculated as :

(c) The mechanical energy is equal to the sum of kinetic and potential energy such that,
M = 0 J + 492.84 J
M = 492.84 J
Hence, this is the required solution.