Answer:
1. the electromagnetic wave.
Explanation:
Mathematically,
wavelength = velocity ÷ frequency
A mechanical wave is a wave that is not capable of transmitting its energy through a vacuum. Mechanical waves require a medium in order to transport their energy from one location to another. A sound wave is an example of a mechanical wave. Sound waves are incapable of traveling through a vacuum.
Electromagnetic waves of different frequency are called by different names since they have different sources and effects on matter, increasing frequency decreases wavelength.
Sound waves (which obviously travel at the speed of sound) are much slower than electromagnetic waves (which travel at the speed of light.)
Electromagnetic waves are much faster than sound waves and If the Velocity of the wave increases and the frequency is constant, the wavelength also increases.
Explanation:
Sucrose is a disaccharide which is composed of fructose and glucose. Sucrose molecule has oxygen atoms bonded to hydrogen atoms (O-H bonds - Polar groups) on all ends of its double 6-Carbon ring. The areas near the oxygen atoms are slightly negative, and the areas near the hydrogen atoms are slightly positive that is, the O-H bonds are polar. They bond with the neighbouring Oxygen and Hydrogen atoms because of their
dipole - dipole attractions and hence hydrogen bonds are formed.
However, the covalent bonds within the molecule aren't broken. But rather, the hydrogen bonds holding the sucrose molecules in the crystalline lattice.
Answer:
0.75 Amps
Explanation:
I had this question and this was right
To solve this problem we need to use the proportional relationships between density, mass and volume, together with Newton's second law.
The force can be described as

Where,
m = Mass
g = Gravitational acceleration
At the same time the Density can be defined as

Where,
m = mass
V = Volume
Replacing the value of the mass at the equation of Force we have,

Since the difference between the two forces gives us the total Force then we have to

Where
Force of the water
= Force of plastic
Therefore with the values for this force we have,





Therefore the tension in the thread is 16.412N