The rubber protects him from being electrocuted by the flow of current going through the plug.
Hope this helped!!
The teardrop could be an example as it was designed for that purpose, and most notably planes and such aero traveling vehicles
Answer:
x = 0.4 m
Explanation:
When a spring is stretched from its equilibrium position. Some energy is stored in the spring. This energy is called the elastic potential energy of the spring. The formula used to calculate the magnitude of this stored energy is given as follows:
P.E = (1/2)kx²
where,
P.E = Elastic Potential Energy Stored in the spring = 45 J
k = Spring Constant = 540 N/m
x = amount of stretching = ?
Therefore,
45 J = (1/2)(540 N/m)x²
x² = (45 J)(2)/(540 N/m)
x = √(0.167 m²)
<u>x = 0.4 m</u>
Line of code will call force with a value of 10 for mass and a value of 9.81 for acceleration is force(10, 9.81).
<h3 /><h3>Line of code for force and acceleration</h3>
- In mechanics, acceleration refers to the rate at which an object's velocity with respect to time varies.
- Acceleration is a vector quantity (in that they have magnitude and direction).
- The direction of an object's acceleration is determined by the direction of the net force acting on it.
- Newton's Second Law states that the combined effect of two factors determines how much an item accelerates.
- The size of the net balance of all external forces acting on the object is, in accordance with the materials used to create it.
- It inversely proportional to its mass, whereas the magnitude of the net resultant force is directly proportional to the net force.
def force(mass, acceleration):
force_val = mass*acceleration
return force_val
10 is assigned to mass and 9.81 is assigned to acceleration
def force(10, 9.81)
So, Line of code will call force with a value of 10 for mass and a value of 9.81 for acceleration is force(10, 9.81).
Learn more about acceleration here:
brainly.com/question/460763
#SPJ4
Answer: The correct answer is kelvin.
Explanation:
The expression for the conversion of degree Celsius to Kelvin is as follows:
K= 273 + degree Celsius
The expression for the conversion of degree Celsius to Fahrenheit is as follows:

The freezing point of water on Celsius degree is zero degree Celsius. The freezing point on kelvin scale is 273.15 K.
The boiling point of water on Celsius degree is 100 degree Celsius. The boiling point on kelvin scale is 373.15 K. The boiling point on Fahrenheit scale is 373.15 K.
Therefore, Kelvin scale has the highest value for the boiling point of water.