A = (v - u) / t
a = acceleration
v = final velocity
u = initial velocity
t = time
45 = (v - 300) / 10
45 × 10 = v - 300
450 + 300 = v
v = 750 m/s
Hope this helps!
P.S. Let me know if you need an explanation
Answer:
E = 3.8 kJ
Explanation:
Given that,
The mass of the object, m = 10 g = 0.01 kg
The heat of fusion of aluminum is 380 kJ/kg
We need to find the energy required to melt the mass of the aluminium. It can be calculated as follows:
E = mL
So,
E = 0.01 × 380
E = 3.8 kJ
So, the energy required to melt the mass is equal 3.8 kJ.
Answer:
1) the unit of power is A.Watt
2)100J=50W
100=50s
divide both sides by 50s
S=2s(A)
Answer:
Zero
Explanation:
here, the inductive reactance and the capacitive reactance is same, so this is the condition for resonance.
In the condition for resonance,
the circuit and the voltage in the circuit is in the same phase and the impedance of the circuit is minimum which is equal to the resistance of the circuit.
The phase angle is given by

Ф = 0
Answer:
D.None of these
Explanation:
The derivation of acceleration formula:
Let us call the 5kg mass
and the 4kg mass
. If the tension in the string is
then for the mass 
(1).
<em>(the negative sign on the right side indicates that acceleration is downwards)</em>
And for the mass 
(2).
<em> (the acceleration is upwards, hence the positive sign)</em>
Solving for
in the 2nd equation we get:
,
and putting this into the 1st equation we get:


Back to the question:
Using the formula for the acceleration we find


which is the acceleration that none of the given choices offer. Also, the acceleration of the two blocks is the same, because if it weren't, the difference in the instantaneous velocities of the objects would cause the string to break. Therefore, these two reasons make us decide that none of the choices are correct.