The average velocity can be calculated using the formula:
v = d / t
For the 1st car, the velocity is calculated
as:
v1 = 8.60 m / 1.80 s = 4.78 m / s
While that of the 2nd car is:
v2 = 8.60 m / 1.66 s = 5.18 m / s
Now we can solve for the acceleration using the formula:
v2^2 = v1^2 + 2 a d
Rewriting in terms of a:
a = (v2^2 – v1^2) / 2 d
a = (5.18^2 – 4.78^2) / (2 * 8.6)
a = 0.23 m/s
Therefore the train has a constant acceleration of about
0.23 meters per second.
Answer:
M1L2T-2
Explanation:
In the equation above 1/2 is a constant and constants do not affect the dimensional formula of any quantity.
Answer: Objective Observations
Explanation: The first step in the Scientific Method is to make objective observations. These observations are based on specific events that have already happened and can be verified by others as true or false
Answer: C = Q/4πR
Explanation:
Volume(V) of a sphere = 4πr^3
Charge within a small volume 'dV' is given by:
dq = ρ(r)dV
ρ(r) = C/r^2
Volume(V) of a sphere = 4/3(πr^3)
dV/dr = (4/3)×3πr^2
dV = 4πr^2dr
Therefore,
dq = ρ(r)dV ; dq =ρ(r)4πr^2dr
dq = C/r^2[4πr^2dr]
dq = 4Cπdr
FOR TOTAL CHANGE 'Q', we integrate dq
∫dq = ∫4Cπdr at r = R and r = 0
∫4Cπdr = 4Cπr
Q = 4Cπ(R - 0)
Q = 4CπR - 0
Q = 4CπR
C = Q/4πR
The value of C in terms of Q and R is [Q/4πR]
Because Mars is further from the sun than Earth is, thus the gravitational pull is not as great on Mars as it is on Earth, making us lighter :)