Answer:
v = 31.32 [m/s]
Explanation:
To solve this problem we must use the principle of energy conservation, which tells us that potential energy is converted into kinetic energy or vice versa. The potential energy can be calculated by the product of mass by gravity by height.

where:
Epot = potential energy [J]
m = mass = 25 [kg]
g = gravity acceleration = 9.81 [m/s²]
h = elevation = 50 [m]
Now replacing:
![E_{pot}=25*9.81*50\\E_{pot}= 12262.5[J]](https://tex.z-dn.net/?f=E_%7Bpot%7D%3D25%2A9.81%2A50%5C%5CE_%7Bpot%7D%3D%2012262.5%5BJ%5D)
When the rock falls the potential energy is converted into kinetic energy.

where:
Ek = kinetic energy [J]
v = velocity [m/s]
Now clearing v:
![v^{2} =\frac{E_{k}*2}{m}\\v=\sqrt{(2*12262)/25}\\v = 31.32 [m/s]](https://tex.z-dn.net/?f=v%5E%7B2%7D%20%3D%5Cfrac%7BE_%7Bk%7D%2A2%7D%7Bm%7D%5C%5Cv%3D%5Csqrt%7B%282%2A12262%29%2F25%7D%5C%5Cv%20%3D%2031.32%20%5Bm%2Fs%5D)
It depends on the length of the pendulum and the strength of gravitational pull acting upon the pendulum.
Hope this helps!
Answer:
Acceleration of the bullet will be 1778835.6
Explanation:
We have given length of the barrel refile s= 0.855 m
When the bullet leaves the muzzle its velocity is 553 m/sec
So final velocity v = 553 m/sec
Initial velocity will be 0 that is u = 0 m/sec
According to third equation of motion 


Electrical > light,sound and thermal