Answer:
substitution is the best method or collecting like terms
Explanation:
C6H12O + 6OC2 + 6H2O + energy
Answer:
<em>In the given question Brianna is trying to make a </em><em>whole figure by combining different single elements.</em>
Explanation:
Here are the different coloured that are used to join and make one piece this method that Brianna is following is called synthesis.
The combination here is of simple substances that are combined directly to make a complex compound. The compound formed is complex while the substances that combined together can be element or compound or a combination of both.
Answer:
Explanation:
Magnetic materials are always made of metal, but not all metals are magnetic. Iron is magnetic, so any metal with iron in it will be attracted to a magnet. Steel contains iron, so a steel paperclip will be attracted to a magnet too. Most other metals, for example aluminium, copper and gold, are NOT magnetic.
<h3><u>Answer;</u></h3>
321.8 g CaF2
321.5 g Al2(CO3)3
<h3><u>Explanation;</u></h3>
The equation for the reaction is;
3 CaCO3 + 2 AlF3 → 3 CaF2 + Al2(CO3)3
Number of moles of CaCO3 will be;
=(412.5 g CaCO3) / (100.0875 g CaCO3/mol)
= 4.12139 mol CaCO3
Number of moles of AlF3 will be;
= (521.9 g AlF3) / ( 83.9767 g AlF3/mol)
= 6.21482 mol AlF3
But;
4.12139 moles of CaCO3 would react completely with 4.12139 x (2/3) = 2.74759 moles of AlF3.
Thus; there is more AlF3 present than that, so AlF3 is in excess, and CaCO3 is the limiting reactant.
Therefore;
Mass of CaF2 will be;
(4.12139 mol CaCO3) x (3/3) x (78.0752 g CaF2/mol) = 321.8 g CaF2
Mass of Al2(CO3)3 on the other hand will be;
(4.12139 mol CaCO3) x (1/3) x (233.9903 g Al2(CO3)3/mol) = 321.5 g Al2(CO3)3