Answer:
4-oxopentanoic acid.
Explanation:
In this case, we must remember that the Grignard reaction is a reaction in which <u>carbanions</u> are produced. Carboanions have the ability to react with CO2 to generate a new C-C bond and a carboxylate ion. Finally, the acid medium will protonate the carboxylate to produce the <u>carboxylic acid group.
</u>
The molecules that can follow the mechanism described above are the molecules: p-methylbenzoic acid, cyclopentane carboxylic acid and 3-methylbutanoic acid. (See figure 1)
In the case of <u>4-oxopentanoic acid</u>, the possible carbanion <u>will attack the carbonyl group</u> to generate a cyclic structure and an alcohol group (1-methylcyclopropan-1-ol). Therefore, this molecule cannot be produced by this reaction. (See figure 2)
The chemical reaction would be expressed as follows:
HBr + LiOH = LiBr + H2O
We are given the volumes and corresponding concentration to be used for the reaction. We use these values to solve for the concentration of the other reactant. We do as follows:
0.253 mol LiOH / L solution ( 0.01673 L ) ( 1 mol HBr / 1 mol LiOH ) = 0.00423 HBr needed
Concentration of HBr =0.00423mol / .010 L = 0.423 M HBr