1. P = F/A; weight is a force (the force of gravity on an object), so divide the weight by the area given. P = 768 pounds/75.0 in² = 10.2 pounds/in².
2. Using the same equation from question 1, rearrange it to solve for A: A = F/P. We're given the force (the weight) and the pressure, so A = 125 pounds/3.25 pounds/in² = 38.5 in².
3. Again, using the same equation from question 1, rearrange it this time to solve for F: F = PA = (4.33 pounds/in²)(35.6 in²) = 154 pounds.
4. We can set up a proportion given that 14.7 PSI = 101 KPa. This ratio should hold for 23.6 PSI. In other words, 14.7/101 = 23.6/x; to solve for x, which would be your answer, we compute 23.6 PSI × 101 kPa ÷ 14.7 PSI = 162 kPa.
5. We are told that 1.00 atm = 760. mmHg, and we want to know how many atm are equal to 854 mmHg. As we did with question 4, we set up a proportion: 1/760. = x/854, and solve for x. 854 mmHg × 1.00 atm ÷ 760. mmHg = 1.12 atm.
6. The total pressure of the three gases in this container is just the sum of the partial pressures of each individual gas. Since our answer must be given in PSI, we should convert all our partial pressures that are not given in PSI into PSI for the sake of convenience. Fortunately, we only need to do that for one of the gases: oxygen, whose partial pressure is given as 324 mmHg. Given that 14.7 PSI = 760. mmHg, we can set up a proportion to find the partial pressure of oxygen gas in PSI: 14.7/760. = x/324; solving for x gives us 6.27 PSI oxygen. Now, we add up the partial pressures of all the gases: 11.2 PSI nitrogen + 6.27 PSI oxygen + 4.27 PSI carbon dioxide = 21.7 PSI, which is our total pressure.
Burning is a chemical property so (c) for #1
Sodium has one valence electron in its 3rd orbit
1) T<span>he dissolution of the salt potassium sulfite:
K</span>₂SO₃(aq) → 2K⁺(aq) + SO₃²⁻(aq).
Potassium has +1 charge because it lost one electron to accomplish stabile electron configuration of noble gas argon.
2) From dissolution reaction: n(K⁺) : n(SO₃²⁻) = 2 : 1.
n(K⁺) = 0.700 mol.
0.700 mol : n(SO₃²⁻) = 2 : 1.
n(SO₃²⁻) = 0.700 mol ÷ 2.
n(SO₃²⁻) = 0.350 mol; amount of sulfite anions.
Answer:
The amount of water on the Earth is constant, or nearly so. Actually, the amount is increasing ever so slightly due to volcanic eruptions expelling water vapor into the atmosphere, but, for all practical purposes, the amount of water (as a gas, liquid and as snow and ice) can be considered to be constant.
Explanation: