2-7-1
<h3>Further explanation
</h3>
Electrons can move the shell up or down by releasing energy or absorbing energy
Excited electrons show higher electron transfer to the shell by absorbing energy
So it can be concluded that there are 2 conditions:
Ground state is the state of electrons filling shell with the lowest energy levels.
Excited state is the state of electrons which occupies a higher energy level
The state of excited electrons can be seen from the presence of electrons which do not fill the skin completely but fill the skin afterward
2-7-1
From its 8 electron configuration, filling 3 shells, 2 electrons in the firs shell, 7 electrons in the second shell and 1 electron in the third shell
the electrons in the third shell should fill the electrons in the second shell first according to Aufbau rule (lower energy shells)

<h3>
1.</h3>
C) The volume of the gas is proportional to the number of moles of gas particles.
The Avogadro's law applies to ideal gases with constant pressure and temperature. By that law, the volume of an ideal gas is proportional to the number of moles of particles in that gas.
<h3>2.</h3>
B) The gas now occupies less volume, and the piston will move downward.
Boyle's Law applies to ideal gases with a constant temperature. The volume of an ideal gas is inversely related to its pressure. A high pressure drives gas particles together, such that they occupy less volume. The gas trapped inside the piston has a smaller volume. As a result, the the piston will move downward.
Alternatively, consider the forces acting on the piston. Both the atmosphere and gravity are dragging the piston down. In order for it to stay in place, the gas below it must exert a pressure to balance the two forces. Now the pressure from outside has increased. The gas inside needs to increase its pressure. It needs a smaller volume to create that extra pressure. As a result, its volume will decrease, and the piston will move downwards.
Density = mass/volume = 800/200 =4 g/cm^3
Answer:
Explanation:
<u>1) First law of thermodynamic (energy balance)</u>
- Heat released by the the hot water (345K ) = Heat absorbedby the cold water (298 K) + Heat absorbed by the calorimeter
<u>2) Energy change of each substance:</u>
Heat released or absorbed = mass × Specific heat × change in temperature
- density of water: you may take 0.997 g/ ml as an average density for the water.
- mass of water: mass = density × volume = 50.0 ml × 0.997 g/ml = 49.9 g
- Specif heat of water: 1 cal / g°C
- Heat released by the hot water:
Heat₁ = 49.9 g × 1 cal / g°C × (345 K - 317 K) = 49.9 g × 1 cal / g°C × (28K)
- Heat absorbed by the cold water:
Heat₂ = 49.9 g × 1 cal / g°C × (317 K - 298 K) = 49.9 g × 1 cal / g°C × (19K)
- Heat absorbed by the calorimeter
Heat₃ = Ccal × (317 K - 298 K) = Ccal × (19K)
<u>4) Balance</u>
49.9 g × 1 cal / g°C × (28 K) = 49.9 g × 1 cal / g°C × (19 K) + Ccal × (19 K)
Ccal = [49.9 g × 1 cal / g°C × (28 K) - 49.9 g × 1 cal / g°C × (19 K) ] / 19K
Ccal = 23.6 cal/ K
- Convert to cal / K to Joule / K
23.6 cal / K × 4.18 J / cal = 98.6 J/K
Which rounded to 2 signficant figures leads to 99 J/k, which is the first choice.