Answer:
22m/s
Explanation:
Given parameters:
Time = 5s
Acceleration = 4m/s²
Initial velocity = 2m/s
Unknown
Final speed = ?
Solution:
To solve this problem, we use the expression below;
v = u + at
v is the final speed
u is the initial speed
a is the acceleration
t is the time taken
So, insert the parameters and solve;
v = 2 + 4 x 5 = 22m/s
Answer: The pH of an aqueous solution of .25M acetic acid is 2.7
Explanation:

cM 0 0
So dissociation constant will be:

Give c= 0.25 M and
= ?

Putting in the values we get:


![[H^+]=c\times \alpha](https://tex.z-dn.net/?f=%5BH%5E%2B%5D%3Dc%5Ctimes%20%5Calpha)
![[H^+]=0.25\times 0.0084=0.0021](https://tex.z-dn.net/?f=%5BH%5E%2B%5D%3D0.25%5Ctimes%200.0084%3D0.0021)
Also ![pH=-log[H^+]](https://tex.z-dn.net/?f=pH%3D-log%5BH%5E%2B%5D)
![pH=-log[0.0021]=2.7](https://tex.z-dn.net/?f=pH%3D-log%5B0.0021%5D%3D2.7)
Thus pH is 2.7
Answer:

Explanation:
Data provided as per the question below:-
Wavelength = 430.nm
The computation of the frequency of the light is shown below:-
Frequency = Velocity of light ÷ Wavelength
The Velocity of light = 
Wavelength = 430 nm =
m
Frequency = 


= 
Therefore for determining the frequency we simply applied the above formula.
Explanation:

Moles of compound =

We have ;
Volume of solution = 600 mL = 0.600 L ( 1 mL = 0.001 L)
Moles of NaOH = n
Molarity of the solution = 3 M

n = 3 M × 0.600 L = 1.800 mol
Mass of 1.800 mole sof NaOH :
1.800 mol × 40 g/mol = 72.0 g
Preparation:
Weight 72.0 grams of sodium hydroxide and add it to the 500 mL of volumetric flask along with some water. Dissolve the all the solute by adding small proportion of water. After the solution becomes clear make the water upto the mark of 500 ml.
Transfer the solution to a bigger beaker and 100 mL of water more to it.